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Preface

The purpose of this study was to add formality to

knowledge representation in the Artificial Intelligence (AI)

field. Because knowledge representations could be consid-

ered analogous to abstract data types, I felt that there

must be a variety of formal analysis techniques already

developed by computer scientists that could be applied

directly to my formalization task. In pursuit of this gen-

eral concept, I found that formal language researchers had

developed such a set of techniques. By showing the useful-

ness of these existing techniques in this dissertation, I

Ufeel that AI researchers can now be prevented from "re-
inventing the wheel" in their search for formal techniques

to use in analyzing knowledge representations.

Because of the numerous articles I reviewed in search of

the techniques, I chose only to cite a representative sample

within the body of the dissertation. However, my views on

the dissertation subject could not help but be swayed by all

the articles I did review. Therefore, to provide you with a

better understanding of my position, I placed in Appendices

A and B my extensive bibliography on formal language theory

and AI knowledge representation. I make no claims as to the

completeness of the lists.
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. 1

Abstract

With the entry of Artificial Intelligence (AI) into

Ai real-time applications (e.g. Defense Department's Pilot's

Associate Program), a rigorous analysis of Al expert systems

is required in order to validate them for operational use.

This analysis effort should include the formal mathematical

analysis of the individual computer program elements con-

tained within these expert systems. Included in this set of

elements are the various knowledge representation schemes

used for the knowledge-base.

To satisfy this requirement for analysis of knowledge

representations, the techniques of formal language theory

are used. A combination of theorems, proofs and problem-

solving techniques from formal language theory are employed,

either directly or in a modified form, to analyze language

equivalents of the more commonly used AI knowledge repre-

sentations of production rules (excluding working memory or

situation data) and semantic networks.

This analysis reveals specific characteristics about

these two representations such as their formal language-

" type, representation set-size, closure properties, special-

case equivalences, special-case transformations and special

representation-variations. Because of the complexity of

formal language theory, many examples are provided to help

-1 % ?. clarify these characteristics.

v..
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, By studying several of these characteristics in combi-
4J.

nation, two major results are identified that affect the use

of these two representations. The first result stems from

the characteristic that there is a countably infinite number

of possible knowledge-languages (the sets of antecedent/

consequent words, node-label words and relation-words) that

can be contained in either a production-rule or a semantic-

network structure. Using this characteristic, no single

support-tool or automatic-programming tool can ever be

constructed that will be able to handle all possible

production-rule or semantic-network variations.

The second result stems from the characteristic that

while the set of all finite production-rule languages and

the set of all finite semantic-network languages are not

equivalent, there are unique subsets of these languages that

can be transformed into each other by a single transfor-

mation. Using this transformation, the entire set of finite

*production-rule languages is shown to be able to be stored

in and retrieved from some of the finite semantic-network

languages. In effect, the semantic-network structure is a

viable candidate for a centralized database of knowledge.

A
xvii



A NON-COGNITIVE FORMAL APPROACH TO KNOWLEDGE

REPRESENTATION IN ARTIFICIAL INTELLIGENCE

I. Introduction

Background

One of the oldest subjects of interest to philosophers,

linguists, psychologists, etc., is human intelligence. In

the past, they have attempted to define intelligence as

various collections of observed human behaviors. Based on

the characteristics of these behaviors, they proposed

theories and models that could generate the same "intelli-

gent" behavior patterns. For example, the behavioral

psychologists' stimulus-response pair model is used

extensively in their research (1:4).

Because these older models of human intelligence were

based on example observations, many questions were raised

regarding the ability of the models to accurately simulate

all human beings. As advances in medical technology pro-

vided increased knowledge about the human brain, these

questions of accuracy were handled by expanding the older

models to include known brain operations. These more

advanced models are known as the neural networks (2).

However, the brain operations that are being simulated are

still based on nondestructive observations. Therefore,



--

N these more advanced models are still relying on example

observations and are now at a lower modeling level than was

previously possible.

Intelligent Computers. As these advances in knowledge

about the brain were being made, another technology was

being developed which would significantly impact all of the

models of human intelligence. That was the development of

the digital computer. Various sequential processes that

- 4were thought to generate intelligent behavior patterns could

also be modeled via computer programs. For example,

Newell's and Simon's Logic Theorist model was implemented in

a computer program and studied via that medium (1:3). Of

course, the use of computers assumes that human intelligence

is a logical process.

At the same time these more advanced psychological

models were being studied, a specialty area was developing

which studied computer programs that exhibited "intelligent

behavior": Artificial Intelligence (AI). The psychological

models and the computer program models appeared to come

together when Quillian's computer program model called a

semantic network was classified as a psychological model of

,, human memory (1:8).

Quillian's tie between psychological models and computer

programs led to the generation of the term "Cognitive

Science." Cognitive Science involves the study of computer

models of human thinking (1:4). Examples of such models

that have been studied to date are given in Table I.

2



Table I. Cognitive Models (l:Section XI)

Problem Solvers: General Problem
.4.. Solver.

Opportunistic
Problem Solver.

Memory Models: Semantic Network

Human Associative
Memory.

MEMOD.

ACT.

Learning: Elementary Perceiver
and Memorizer (EPAM).

Belief Systems: PARRY.

p.?

An outstanding characteristic of these cognitive models

is that they are developed from a macro-level point of view.

That is, cognitive models use high level abstract defini-

tions of the internal brain structure and perform functions

based on that definition. For example, Figure 1 shows a

semantic network representation of the relationship of

GolfBag to Bags and Bags to Containers. The semantic-

network model uses an abstraction of nodes and links to

model how the brain stores information. How an individual

symbol, node or link is actually stored within memory is not

of direct importance to the model definition. Only the

node/link string names and the existence of link ties are of

concern (see the subsection on semantic networks in Section

I for more details on this model).
'I
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Containers

subsetof

Bags

element-of

GolfBag

Figure 1. Semantic Network Bag Model

In contrast, neural-network models operate at the micro-

level by using various interconnection patterns of neurons

to model functions. For example, the word Bags could be

modeled in a neural network as shown in Figure 2. Each

letter symbol is modeled by a single neuron. To operate,

the letter-neurons each fire when stimulated (e.g. reading

the letters). By receiving the proper electrical inputs, a

word-neuron at a second level is then stimulated and fires.

This word-neuron could then be the same word, Bags, used in

the semantic network of Figure 1.

From Figure 1 and Figure 2, interesting analogies can be

J 4%- drawn. One is that the micro-level model is analogous to

4
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Bags

Figure 2. Neural Network Word-Model

the hidden implementation details of an Lbstract data type

(3). Another is that the macro-level models which deal with

memory modeling (see Table I) are analogous to atomic

abstract data type constructs. Another analogy is that any

macro-level model which uses a memory model is analogous to

an object level computer program (4). These analogies are

not unexpected since cognitive models have been implemented

on computers.

Artificial Intelligence Definition. Because of this

relationship between AI and psychology, extremists' views

have caused difficulties in defining artificial intelli-

o .,.~ gence. Some argue, without proof, that these two fields are

p* 5
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indeed equivalent. That is, humans are equivalent to logic

devices. Others argue that the fields are entirely

unrelated because human creativity does not always follow a

logical path. While these different positions exist, the

proponents of each position are really arguinj the existence

of a single model which would account for human

intelligence.

To keep from being involved in the issues surrounding

the existence of a single human intelligence model, a

definition of Al which handles both extremes is used. While

this definition is a combination of ideas from the AI

handbook (2; 5), it is not so stated within the body of that

text. The definition of AI used here is as follows:

' "Definition 1.01: AI is the study of encoding human knowledge

into abstract data types and the develop-

ment of computer procedures to manipulate

the encoded knowledge into an output form

which, when decoded, exhibits aspects of

intelligent human behavior.

This definition encompasses the views of both sets of

extremists as a result of the encoding of the knowledge and

the decoding of the output. If humans are logical devices,

then the encoding/decoding is a moot point. If not, then

1 the level of the behavior exhibited rests entirely on the

4. encoding/decoding external to the machine.

In addition, this definition is capable of encompassing

the specialty areas of planning, theorem proving, problem

6

h A5, -,. '.. .. '..: ",- ''L.... " "" " " .""'" " ' " '



solving, learning, knowledge representation, robotics,

- " S pattern recognition and expert systems within the field of

AI research. For example, the manipulating procedures

identified in Definition 1.01 can be considered as the

procedures used in the problem solving models as given in

Table I.

Formal Language Theory. Besides these relationships

among AI, psycLology and computer programs, there is another

field where AI associations are strong: formal language

theory. To better understand these ties, some background on

formal language theory is presented. Because formal lan-

guage theory is well developed, only a very limited back-

ground is given. The reader is referred to text books such

as Revesz (6) or Ginsburg (7) for detailed background and to

Appendix A for additional formal language references.

Definitions and Characteristics. Formal language

theory received attention when Chomsky proposed his four

types of grammar (8). In general, a grammar is defined as

follows (6:2):

Definition 1.02: A generative grammar is an ordered

four-tuple, G:=(NT,T,S,P). NT is a finite

set of nonterminal symbols. T is a finite

set of terminal symbols (alphabet). S is a

special nonterminal start symbol subset

contained in NT. P is a set of Post

rewrite production-rules of the form a->b.

i? :.7
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Each production rule in P takes a single nonterminal symbol

and rewrites it into a new combination of terminal and/or

nonterminal symbols. The production rules are applied

nondeterministically beginning with the start symbol and

ending when the string (word) being generated contains only

terminal symbols. A single grammar is capable of generating

all the possible words in a language.

Chomsky's four types of grammar are defined via

variations of their production rules.

p1 Definition 1.03: A type-0 grammar, G(0):=(NT,T,S,P), is a

generative grammar which contains unre-

stricted production rules of the form a->b

where aC (NT>'T) and bC (NTujT) . The

+" and "*' indicate the Kleene closure of

the elements of the indicated set without

the empty word and with the empty word,

respectively (8:142).

Definition 1.04: A type-i grammar (context-sensitive),

G(l):=(NT,T,S,P), is a type 0 grammar with

the added restriction that each string

produced after applying a single production

rule must be greater than or equal to the

length of the string before the application

of that rule. That is, mjv->mkv where

jC NT, kC (NT'T)+ and

m,vC (NT T) (8:142).

8
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Definition 1.05: A type-2 grammar (context-free),

G(2):=(NT,T,S,P), is a type 1 grammar which

has only productions of the form j->k where

jC NT and k C(NT uT)+ (8:142).

Definition 1.06: A type-3 grammar (regular),

G(3):=(NT,T,S,P), is a type 2 grammar which

has all production rules in one of two

forms: j->pn or j->p where j,nCNT and

pC T (8:142).

The inheritance of restrictions shown explicitly in the

previous definitions of the grammar-types was proven by

Chomsky:

Theorem 1.01: Type 0 DType 1 Type 2D Type 3 (8:152).

Chomsky also proved that the type-0 languages are

equivalent to recursively enumerable sets (the set of

languages accepted by Turing machines). Chomsky and others

continued research and showed that type-i languages are a

subset of the recursive sets. Also, type-2 languages were

proven to be those languages accepted by a nondeterministic,

finite machine with one pushdown-store. In addition, type-3

languages were found to be regular sets (languages accepted

by a finite automaton) (9:43).

Languages and Grammars. From these initial defini-

tions and characteristics, language theory research spread

out in several directions. In one direction, many languages

were defined and studied. Examples include real-time

languages (10), one-way list-storage languages (11), time-

!9
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bounded languages (12), tally languages (13), counter

languages (14), left-derivation bounded languages (15) and

languages constructed from the sentential forms (interim

words containing both terminals and nonterminals) called

Szilard languages (16).

One of the most studied classes of languages is the

regulated languages. These languages use a context-free

grammar along with a set of rules that control when a

specific rewrite production-rule can be applied. These

languages are part of the set used for compiler applica-

tions. Examples of these languages include those generated

by programmed grammars (17), scattered context grammars

(18), attribute grammars (19) and indexed grammars (20).

In another research direction, grammars were studied

abstractly. Some examples are grammar schemata (21),

compound grammars (22) and grammar forms (23).

Not being satisfied with studying individual varieties

of languages, language researchers found certain common

characteristics existed among different languages (e.g.

closure under intersection with regular sets). These

findings led Ginsburg and Greibach to develop the concept of

Abstract Families of Languages (AFL) (24). An AFL is a

collection of sets of finite words (languages) each of which

was generated from some finite alphabet. By definition, an

AFL is closed under union, product, empty-word free Kleene

closure, inverse homomorphism, empty-word free homomorphism

and intersection with regular sets.

10



One of the unique characteristics of AFLs is that the

contained languages can be generated from different alpha-

bets by different types of grammars. Note that regular

sets, context-free languages, context-sensitive languages,

recursive sets and type-0 languages, all over the same

alphabet, each form an AFL by itself (24).

While an AFL is restricted to the six closures spec-

ified, the study of AFLs, in general, is not bounded by

those closures. For example, a full-AFL is one which is

closed under all possible homomorphisms (25). An additional

example is the pre-AFL where the member languages do not

meet some of the six closure properties (26). On the other

hand, a super-AFL is a full-AFL which exhibits additional

closure relationships beyond the six specified (25).

While AFLs contain many languages, special families

exist where the theorist only has to study a single language

in order to obtain the characteristics of the entire family:

principal-AFLs (27). In these families, a single language

exists from which all other members can be obtained by

applying the six closure operations on this "base" language

(24). The closure relationships pass the characteristics of

the base language to all descendants.

In addition to studying specific families of languages

researchers investigated hierarchies of languages. For

example, ordering languages by the time needed to accept

-__ them forms a language hierarchy (28). A different language

hierarchy is formed by ordering the languages based on the

! 11



number of nonterminal symbols allowed on the right hand side

of the rewrite production-rules (29).

Perhaps one of the most important language

characteristics that AFL theory has yielded is the existence

of infinite hierarchies of families of languages. For

example, an infinite hierarchy of context-sensitive AFLs has

been shown to exist (30). Another infinite hierarchy of

AFLs can be generated by applying the substitution operator

to any full-AFL that is not closed under substitution (25).

Even infinite hierarchies of AFLs, each of which is an

infinite hierarchy of AFLs, has been shown to exist (31).

Language Problems. Formal language theory involves

more than the study of different varieties of languages. It

also involves the study of the solvability of language

* related problems. For example, given two type-3 grammars,

it is possible to determine if they generate the same

language without having to enumerate all the words in each

language and compare them (weak equivalence). However, for

type-2 grammars, this is not possible (unsolvable)(9:54-67).

Since some cases of weak equivalence were found to be

unsolvable, variations on the equivalence definition were

made in the search for solvable equivalence. One example

variation for language equivalence is structural equiva-

lence. Structural equivalence exists when languages use the

same derivational tree structure (32). An example variation

for grammar equivalence is transformational equivalence.

There, grammars which are able to be translated into one

12
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another by application of homomorphisms are considered

equivalent (33).

Other investigations involved the study of the solv-

ability of the word membership problem. That is, proving

that a word belongs to a given language. For example, given

a word and a grammar, it is unsolvable for any type-0

grammar whether or not the word is in the language generated

by the grammar (9:63). The word membership problem,

however, is solvable for type-l grammars (9:54).

Because the existence of these unsolvable problems

caused concern for those investigating using languages to

model other problems, language theorists searched for

p.. special classes of languages where these problems could be

AI solved. For example, context-free grammars which have

rewrite production-rules that can be used either forward or

backward without changing the set of sentential forms

(interim words) have a solvable equivalence problem (34). A

similar result was proven for languages generated by

V parenthesis grammars (35).

Studying language problems as a theoretical curiosity

did not satisfy language theorists. Because of the symbolic

nature of languages, some theorists teamed with others from

different academic fields to attempt to solve problems in

*those fields by using formal language theory techniques.

For example, by using rewrite production-rules in parallel,

biological growth could be modeled and studied (36). In

another field, graphs were studied via graph grammars (37).

13



In another example, solutions to mathematical equations were

* studied via formal language representations (38). A further

example is investigation of computer networks and time

sharing systems via formal language theory (39).

Relationship of AI and Formal Languages. Given this

background on formal language theory, the relationships of

AI and formal languages can now be approached. These rela-

tionships currently can only be indicated via example cases

because no supporting proofs exist in the literature which

show that the relationship of formal languages and AI exists

for all the Al systems. However, the mere existence of

these example cases show that some formal relationships may

exist.

To keep from getting involved in the details of these

example applications, only a short description of the

informal ties between the AI system and formal languages is

given initially. Also, a few examples are provided to

motiv&te the development of formal relationships. The

reader is referred to the references in Appendix B for

additional examples. For more details on the AI systems

mentioned, the reader is referred to the AI handbook (2; 5).

In this set of example applications, there are several

cases where the tie between AI production systems and formal

languages can be seen. One example is the use by Vere of a

type-0 grammar to develop a relational production system

__ (40). Another example is the technique used to infer the

14
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control structure for a programmed grammar production

system (41).

In addition to these AI production systems, formal

languages have several direct relationships with AI learning

systems. For example, grammatical inference is considered

to be one of the tasks performed by learning machines (42).

Formal language theory was also used to prove the nonexis-

tence of an ideal learning machine (43). A further example

is a learning robotic system which uses a hierarchy of

grammars between the man-machine interface and the

robot (44).

Of all the ties between AI systems and formal languages,

the relationship between pattern recognition and language

theory is the best known. The most familiar example is the

use of Web grammars to generate patterns for picture recog-

nition (45). In another case, Attributed grammars have been

used in shape recognition (46). A further example is the

Plex languages. They were developed to model physical

systems like printed characters and circuit diagrams (47).

Recognizing these relationships between AI and formal

languages, many questions arise regarding the models of

human intelligence that AI computer programs simulate. Are

the proposed human intelligence models a sentence in some

higher level programming language or an entire programming

language themselves? Are there countably infinite versions

of a single model? Does a countably infinite number of

unique human intelligence models exist? Can any model of

U 15



human intelligence be proven to truly represent intelligent

behavior?

While answers to these questions may be debated for many

years to come, one component of these models can be investi-

gated in regard to these questions. That component is the

form of knowledge representation used to simulate the human

storage of knowledge.

Individual Knowledge Representations. In general,

knowledge representations can be considered as abstract data

types (3). This characteristic can be identified from the

definition of Al (see Definition 1.01). The first part of

the AI definition involves encoding human knowledge into

abstract data types (standard computer science practice for

,. program data). In the past, AI knowledge representations

.- have been defined as a combination of data structures and

interpretative procedures that, if used in the right way in

a program, will lead to "knowledgeable" behavior (5).

Depending on where one assumes the split to occur between

the main program's control procedures and the data struc-

ture's interpretative procedures, the abstract data types

referred to in the AI definition can be considered to

coincide with the definition of knowledge representation.

The results of this dissertation are based in part on this

separation.

Because of this abstract nature of AI knowledge repre-

se:itations, there is a wide variety of abstract data types

. "that compete for membership in the class of AI knowledge

16
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; . . representations. In general, a representation is referred

to by the name of its underlying data structure and the

data-structure accessing procedures are usually called the

inference mechanisms. In this subsection, examples of the

more popular individual representations are presented. The

discussion on each representation contains, in order,

descriptions of the representation's structure, the

applicable inference mechanism and a specific example. For

the sake of brevity, only a limited description of each

representation will be provided. Cited references can

provide the reader more detailed descriptions. For more

information regarding such areas as applications,

advantages/disadvantages, variations, etc., the reader is

referred to reference 5 and to the references contained in

Appendix B.

Predicate Calculus. Logic has been one of the

strongest foundations for philosophers over hundreds of

years. This strength comes from the consistency that logic

provides as a formal mathematical system. These same

characteristics lead AI researchers to consider logic as a

knowledge representation scheme.

Of all the different variations of logic (e.g. modal,

intuitionist, predicate), AI researchers selected predicate

calculus as a candidate representation. Because of the

hierarchy of predicate-calculus types (e.g. propositional

Scalculus, quantified propositional calculus, equality

calculus, first-order predicate calculus, second-order

17



predicate calculus), the name "predicate calculus" is

insufficient to describe the representation (9: Chapter 2).

The actual representation uses first-order predicate

calculus with equality.

The primary reason that first-order predicate calculus

was chosen is that Church proved that the validity of

first-order predicate calculus statements is partially

solvable while for second-order predicate calculus state-

ments it is not solvable (48). This means that algorithms

exist which will verify that true first-order statements are

indeed true without having to generate all possible true

.. statements.

Secondary reasons for the selection of first-order

calculus involve the "expressibility" of the representation.

The n-ary function constants provide the capability to

represent more than just true/false knowledge. For example,

the function Father(Joe) can retu-n the name John. Equality

provides the capability for function results to be tested as

well as the normal true/false values. For example, the test

Father(Joe)=Bill? returns false.

As noted previously, a knowledge representation scheme's

usefulness comes from the ability to retrieve information

from the structure via the inference mechanisms. Robinson's

computer algorithm based on the resolution principle pro-

vides the primary inference mechanism for first-order

predicate calculus (49). His algorithm applies individual

procedures that generate new true statements from previous

18
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(Vx)[Clubmember(x)=>Fathername(John,Father(x))]

Figure 3. Predicate Calculus Example

ones in an ordered manner. This ordered approach provides a

capability to obtain a solution to a query without gener-

ating all true statements. However, Robinson's approach is

still combinatorial in nature so the number of true state-

ments the algorithm generates is not necessarily the

absolute minimum.

Figure 3 contains an example of the following statement

in first-order predicate calculus: all members of the club

have a father named John. The variable x can represent a

club member name or ID number. The predicate constant,

Fathername, returns true if the function, Father, returns

the name John. The equality test is embedded within the

Fathername predicate.

Production Rules. One of the most influential

developments in mathematics of this century was the

production-rule system introduced by Post (50). Moreover,

psychologists had been modeling human actions as a series of

stimulus-reaction pairs. Recognizing the relationship of

Post's system to these models, Newell and Simon developed

production-rule models of human intelligence (51).

In these rule-models, a production rule consists of an

antecedent-consequent pair. This pair is tied together in

" "the form of an implication statement. That is, if the
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antecedent is true then the consequent is true. The

antecedent-consequent pair may contain declarative

knowledge. However, the pair is not restricted to that type

of knowledge. The consequent part may be complex proce-

dures. With the added concept of "procedural attachment,"

Y# the antecedent part may also entail execution of a procedure

before determining its truth value.

Even though knowledge is represented in a logical

formalism for which a limited set of the predicate calculus

inference mechanisms would apply, production-rule inference

mechanisms are just a restricted form of "generate and test"

algorithms. That is, instead of generating a rule, these

algorithms search the already established rule-set and test

UW for rules which have their antecedent condition met. The

most popular inference mechanisms are backward-chained and

forward-chained search (5).

One of the unique features of production-rule systems is

the close tie the individual rules have with the working

memory during operation. Production rules only represent

conditions that could be true about a given situation. For

example, the set of production rules may contain one rule

that has the consequent that a fact is true while another

rule may have the consequent that the same fact is false.

To determine the correct answer for a given situation, a

production-rule system has to make use of a working memory

that contains information unique to the particular situ-

ation. That is, the set of production rules alone may not
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Figure 4. Expert System Functional Diagram

represent the complete knowledge about an event. A

a-: production-rule system has to use a working memory in

conjunction with the production rules to reach a conclusion.

This working memory has to contain the information needed to

determine which antecedent is true so that the correct

consequent can be applied for the given situation.

To better understand the relationship of this working

memory in a production-rule system, Figure 4 shows a

functional diagram of an expert system. The production

. "'rules reside in the knowledge-base and the working memory is
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If (?patient fever>104) and
(situation data contains patient lab results)

Then
(assign lab results to patient) and
(call rule 37)

Figure 5. Production Rule Example

contained in the situation data. Therefore, as the expert

system operates, the control structure uses both the pro-

duction rules and the situation data to eventually reach a

conclusion.

Because of this close tie with the working memory,

individual production rules are allowed to interact with the

working memory. This interaction can involve viewing the

contents of working memory as an entity and modifying the

contents of the memory as needed.

Figure 5 contains an example production-rule represen-

tation for a medical production-rule system. While the rule

does not represent a simple English language statement, it

does reflect the tie of the working memory to the production

rules as well as the complexity of the rules. In the first

antecedent clause, the unit variable "?patient" allows for

the use of the rule with a specific patient's name. In some

implementations the fever value could be an attribute

assigned to the specific patient's name. Then, the

"greater-than" computation could be accomplished by a

-procedure call that retrieves the fever attribute-value pair

and performs the greater-than test. The second antecedent

22
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clause allows the situation data to be searched for the list

of lab results. This list can be entered separately by lab

technicians that are not directly involved in the execution

of the overall production system.

Once these two antecedent clauses are determined to be

true, the consequent is activated. The first clause of the

consequent assigns the lab results as attribute-value pairs

to the patient's name. This is actually a procedure call.

Then, the second clause directs the inference algorithm to

select the next rule to be tested.

Semantic Networks. The semantic memory model

(see Figure 6) developed by Quillian was an attempt to

handle word meaning in a computer by using a hierarchy of

syntax pointers similar to a dictionary (52). The model was

made up of nodes connected by directed arcs (associative

links). The nodes consisted of two kinds: type (TP) and

token (TK). A "type" node contained a single word whose

definition was obtained by following the associative links

attached to it to other word nodes. In memory, only a

single type-node was assigned to each word. In Figure 6,

the type-node TPI represents the definition of word A. By

,q following the links, two other nodes are reached that

contain words B and C. These two additional words provide

the definition of word A.

The "token" node was a place holder for words that were

used in the definition of another word. From a given

""° type-node, associative links were connected to token-nodes.
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TP1:Word A

and

TKI:Word B ITK2:Word CI-I

TP2:Word B TP3:Word C

Figure 6. Quillian's Semantic Memory

To keep from reproducing the type-node and all its links

every time a word was used in a definition, a token-node was

used which pointed to the single type-node for this embedded

word. Therefore, there may be many common named token-nodes

throughout memory but each points only to its respective,

single, type-node. In Figure 6, nodes TK1 and TK2 represent

the token-nodes for words B and C. By following the links

leaving these token-nodes, their type-nodes, TP2 and TP3,

can be reached.

.24
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The associative links that interconnected the nodes

handled a limited set of primitive relations among the

nodes. These included set/subset, a form of attribute-value

*representation, the token-to-type pointer, conjunction and

disjunction. More complex relationships between two nodes

were handled by dual associative links with the relationship

name residing in the node.

The inference procedures associated with the network stem

from Quillian's spreading activation procedure which "drew"

inferences about two concepts (words). His procedure is

based on the inheritance capability of the network. The

procedure "activated" the two type-nodes representing the

concepts. Their links were then followed to other nodes.

These nodes were activated and their links were followed.

The process was repeated until a common node was activated

by following paths from both concept-nodes. The common node

then described the connection between the original concepts.

From this beginning, the knowledge representation of a

semantic network evolved (53). Nodes now represent words,

concepts, objects, etc. With the advent of procedural

attachment, the nodes can represent calls to selected

procedures. The associative links now represent many

complex relationships (54).

SIn the simplest form, the inference procedures for a

semantic network operate on a basic matching routine. The

routine constructs a data structure that represents the

* '" information being sought. Then, the semantic network is
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Clyde go Elephant] Mammal

is-a
Joe

Ehascolor

Wh i t e Gray

Figure 7. Semantic Network Example

searched for a matching structure and the information is

retrieved. Exact matches are not necessary since the

inheritance capability can be used to locate common infor-

mation that may be stored at a higher level in the network.

Unlike the production rules, a semantic network contains

information that is always true independent of a given

event. The working memory (situation data of Figure 4)

provides only a local storage function for the query and its

data structure equivalent. In effect, a semantic-network

representation contains all the true information about the

world that it represents. On the other hand, production

rules are usually combined with the situation data to

generate world truths.

Figure 7 contains an example of a semantic network

representation of the statement: Clyde is a gray elephant,
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Joe is a white elephant and both are mammals. The associa-

tive links "is -" show the relationship of Joe and Clyde to

elephants and the inherited relationship of mammals. The

"has color" link shows the normal color of elephants. The

"Ehascolor" link shows the exception link indicating that

Joe is white instead of gray. In the operation of a

semantic-network system, the exception link would dominate

the inherited hascolor link for a query involving Joe.

Frames. Frames were originally proposed quite

informally by Minsky to handle the evidence that people use

previous experience to interpret new situations. To use

Minsky's own words (55:212):

A frame is a data-structure for representing a
stereotyped situation, like being in a certain
kind of living room, or going to a child's
birthday party.

For each generic type of frame (room, party, automobile),

slots exist which are filled either with pointers to other

frames, terminal data or default data (see Figure 8). The

frame may even contain information about how to use it or

what to do if it does not exactly fit the situation. Essen-

tially, frames are tables of relations where the values of

the attributes are either explicit or implicit.

The inference mechanisms are basically pattern matching

operations. A frame is selected which matches the input

requested information. In case no exact match is possible,

a metric such as the maximum number of slots matched may be

used so that at least a related but not necessarily correct
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frame may be found. Using the information contained within

the selected frame (e.g. sequence to follow, inheritance

pointers, defaults, procedural attachment), the answer to a

request can then be generated.

Figure 8 contains an example frame representation of the

statement: Joe lives in a two-story frame house at 955 Mann,

Larned, Kansas and the house has 1000 square feet and cost

$50,000. To incorporate this information into the frame-

system, a house-frame would be selected and filled in as

shown. Since there is no missing data in this example, the

only default occurring is the ancestor slot in the house-

frame. The square foot cost slot is a procedure call which

can compute the value if it is needed. See reference 56 for

several examples of frame-systems shown pictorially.

-Scripts. In the Minsky paper on frames, the work

of Schank and Abelson was characterized in relationship to

frames (55). In reaction to this characterization, Schank

and Abelson countered that the frame description was too

general for use. They proposed that their work be consid-

ered as a specialization of a frame idea. They called their

approach "scripts" (57).

Scripts define a sequence of events which normally occur

in association with another event. The idea is that if a

given event can be predicted with regularity, only the
,'

variations from the norm need be identified in a definition

of the event. Therefore, the stored information is a
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Title: Joe's house

Ancestor: (Default=none)

Location: Pointer to Joe's
address-frame

Type: Pointer to Joe's
house-type frame

Title: Joe's address

Ancestor: Joe's house

Street Number: 955

*" Street name: Mann

Town Name: Larned

State: Kansas

Title: Joe's house-type

Ancestor: Joe's house

Construction: Wood frame

Stories: 2

Size: 1000

Cost: 50000

Square foot cost: (compute)

Figure 8. Frame Representation Example

*29



generic sequence of events which contain certain default

slots for variations.

The inference mechanisms for scripts are the same as for

frames for the initial frame selection. However, once the

frame is selected, the system remains within that frame for

all information retrievals. A sequence of events is

followed to obtain the requested information.

The restaurant script is the most famous example of this

knowledge representation scheme. Figure 9 contains a

limited version of this script. Even though this is a

simple example, statements like "Joe ate a hamburger in the

restaurant" will instantiate the script. Then questions

like "did Joe pay the check?" can be answered by investi-

gating the departing sequence contained in the script. The

defaults in the departing sequence allow for a case when the

food is bad and Joe refused to pay the check.

Conceptual Dependency. As with all the knowledge

representation approaches, the goal is to represent knowl-

edge in a machine usable form. In addition to the

machine-form, the question arises as to the form of the

knowledge itself. Since knowledge is usually described by

"natural" language, initial research into the primitive

structure of natural language was conducted by Schank and

Tesler (58). From this early work, Schank developed a

conjecture known as "conceptual dependency" (59).

Schank's conjecture was that the "meaning" obtained from

a natural language statement can be represented
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Title: Restaurant Script

Customer: (default=customer)

Players: Waitress, Chef,
Cashier

Entry: 1. Customer enters
2. Customer waits to

be seated
3. Customer sits down
4. Waitress gives

customer a menu

Order: 1. Waitress arrives to
take order

2. Customer orders
(de fault=hamburger)

Eating: 1. Waitress delivers
order

2. Customer eats

Depart: 1. Waitress brings
check

2. (default=customer
'4 leaves tip)

3. (default=customer
pays cashier)

4. Customer leaves

Figure 9. Script Example

(defined) by a primitive set of actors (ACTs) acting on the

objects in the statement. Hence, equivalent sentences would

translate into the same combination of ACTs.

While the number of ACTs is not fixed, the original

primitive set consisted of eleven members. Five of the ACTs

were associated with physical actions: PROPEL, MOVE, INGEST,
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Figure 10. Conceptual Dependency Example (60)

EXPEL AND GRASP. Two other ACTs dealt with mental actions:

MTRANS and MBUILD. Another two ACTs handled the sight and

sound senses: ATTEND and SPEAK. The last two ACTs covered

physical and abstract state changes: PTRANS and ATRANS.
d

Later extensions added planning, script and goal

actors (60).

The literature does not clearly differentiate between

inference mechanisms in general and those used for a spe-

cific natural language understanding system. Therefore, the

mechanisms are introduced via the operation of a system

known as MARGIE (60). In general, natural language state-

ments are translated into the primitive conceptual

dependency structure. Then, applying some sixteen different

classes of inferences, conclusions are obtained which are

either supported by existing facts in the structure or

cannot be disproved by facts already in the structure.

Figure 10 contains an example of a conceptual dependency

representation of the statement: I threw the ball at the

• 5' window. The double arrow denotes a mutual dependency

4 between actor and action. The p indicates past tense. The

0 means the object of the act. The arrow under the 0 points

to the act. The D combined with the "C" shaped arrow
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denotes the physical direction of the action; from I to

window. The arrow under the D points to the object that is

involved in the act.

Combined Representations. Al researchers have found

that using only a single knowledge representation, such as

one of those described previously, in complex systems is not

always advantageous for a given application. For example, a

repi-esentation may be able to represent all the domain

knowledge (Representation Adequacy) but be unable to help

direct the attention of the inference mechanism during

system operation (Inferential Efficiency) (61:201-202). To

try to overcome these types of performance problems,

researchers have investigated combining several kn.'wledge

representations to gain the advantages each representation

can offer. Several examples follow.

A system which combines semantic networks and frames was

investigated by Hayes (62). The frame was used as a high-

level description of a low-level semantic network. Although

more complex in this application, the frame can be seen to

represent the "planes" proposed by Quillian (52). Referring

to Figure 6, in each type-word plane, the token-words used

to define the type-word are obtained by following the links

within the plane (filled terminal slots in this combined

semantic-network/frame structure). For the token-word

nodes, pointers have to be followed to their planes for

definition (pointer slots).
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In addition to semantic networks, frames have also been

combined with predicate calculus. For example, the Krypton

representation uses a frame-structure to hold terms that are

organized taxonomically (63). Then, first-order sentences

are applied to obtain the predicates from the frame-

representation. In another example, Charniak proposes a

representation that incorporates both first-order sentences

and predicates within a frame-structure (64).

Combined representations are not restricted to just the

dual systems mentioned previously. For example, a combina-

tion of semantic networks, frames and procedures has been

used as a method for representing knowledge in an instruc-

tional system (65). The frame involves the overall subject

while the semantic network shows the relationship of topics.

The procedural aspects handle the control of such items as

questions, frame control, etc.

In addition to frames and semantic networks, procedural

knowledge has also been combined with production rules. For

example, a scheme for incorporating procedural knowledge

within a production-rule system has been proposed which

allows the rules to remain independent of each other (66).

A production system can represent the procedural sequences

by incorporating the sequences into rules that call rules.

That is, the consequent of each rule performs a step and

then calls the next rule in the sequence. However, this

scheme proposes to use a Recursive Transition Network (RTN)
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for the sequencing portions so that the rules remain

S"'independent of each other (56:169-170).

Knowledge Representation Relationships. In addition to

combining representations, researchers have investigated

mapping one scheme into another in search of equivalent

9representations. There are several reasons that researchers

search for equivalence. One reason is they want to show

consistency of various representations by mapping them into

predicate calculus. Another reason is they want to show

that a given representation can "express" the same knowledge

as other representations. A further reason is they want to

convert one representation into another form so that the

advantages of various representations can be used when the

particular problem-solving situation warrants. This search

for equivalence resulted in the controversial procedural

versus declarative knowledge issue (67). While that issue

was never resolved, the work involved in attempting to show

equivalence of various schemes provides insight into the

knowledge representation approaches. Some examples of these

mapping efforts follow:

In the previous subsection on individual knowledge

representations, the definition of knowledge representation

was shown to be analogous to an Abstract Data Type (ADT).

While several approaches have attempted to provide ADT

definitions for knowledge representations, the most complete

one was the semantic network proposed by Dilger and Womann

35

I



(68). Their definition required 35 generic axioms to

NI describe an entire abstract network.

Abstract data types were not the only schemes investi-

gated. One mapping that generated the most interest was

translating a representation into the predicate calculus

2 scheme. For example, using the KRL-0 frame-language, Hayes

provided a translation of KRL-0 frames into predicate

calculus (69). In another example, Simmons and Bruce

developed an algorithm which converts a version of a
4.

semantic network into predicate calculus (70).
4.

Predicate calculus formulations were also translated

into other representations. For example, the combined work

of Sandewall and Hendrix provided an approach to translate

predicate calculus into a special form of semantic networks

called a partitioned semantic network (71; 72). Sandewall

provided the individual clause relationships while Hendrix

developed the quantification relationship into a partitioned

semantic network.

Hendrix's partitioned semantic network was also involved

with translations of production rules. For example, Duda

and others translated production rules into a partitioned

semantic network (73).

Representations were also translated into production

rules. For example, Rychener implemented unique frames via

production rules in his Instructable PMS Language system

(74). As a concluding example, frames can be used to
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implement scripts. This relationship was pointed out by

Minsky in his original definition of frames (55).

The Problem

From this extensive background research on formal

language theory and knowledge representations, one major

conclusion can be reached. The conclusion is that given all

the research heretofore performed by all the philosophers,

psychologists, linguists, computer scientists, etc., there

still does not exist an acceptable model for human intelli-

gence. Because a human model hinges on our ability to

nondestructively investigate the internal workings of a

living human being, there are risks that a true model of

human intelligence may never be found.

The same risk is passed down to the cognitive scientists

in two forms. First, there is a risk that the human cannot

* be simulated by a computer program. Second, assuming that a

computer model exists, there is a risk that it may never be

found (see Section IX for more details on these risks).

Because of this lack of a model of human intelligence,

there still is no acceptable theory of knowledge represen-

tation (5). From the higher level theories of those like

Bobrow (75) and Newell (76), through the individual schemes

already described previously, no single approach has been

found which will handle intelligent tasks. However, knowl-

edge representation research still continues.
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Problem Background. As with any computer simulation

task where the underlying model is unknown, research on

knowledge representations involves the development of

experimental versions. These versions will be implemented,

evaluated, revised, re-implemented, re-evaluated, etc.

Finally, when a representation is actually implemented in an

operational system, the selected version will need to be

formalized and validated as a general representation scheme.

.4. For a given representation, this validation effort

includes providing detailed definition of the representa-

tion, determining the scheme's limitations, identifying its

computational efficiencies, investigating its relationships

with other representations, etc. However, this does not

include verification of the model's applicability to humans.

The elusive nature of the human model prevents the gener-

ation of the necessary verification procedures.

With the AI field's entry into actual real-time applica-

tions (e.g. Defense Department's Pilot's Associate Program),

knowledge representations are requiring a rigorous evalu-

ation stage. Without the backing of detailed analyses,

there are high risks in selecting an acceptable representa-

tion for a real-time application. As an example of these

risks, a representation could be selected that can only

handle a special set of knowledge. But, as the system using

this representation ages, new knowledge has to be added to

the representation in order to keep the overall system

current. When the new knowledge is attempted to be added,
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it may be the case that the representation cannot accom-

modate all the new information efficiently. In the extreme

case, the modified system may no longer be able to operate

within the necessary time constraints. This could force a

complete redesign of the system including selection of a

different knowledge representation (61:201-202).

Some of these real-time applications involve expert

systems. Associated risks involve the obtaining of the

expert's knowledge in a form that can be properly imple-

mented in several knowledge representations. Without

supporting comparison analyses, there is a risk that the

knowledge gained from an expert may be stored in a form that

cannot be effectively translated into other knowledge

representations. If this is the case, there is a risk that

the particular storage form may only be useful in a limited

number (if any) of real-time applications.

While these examples of risks point out the negative

aspects of not performing the needed analyses, there are

positive side effects that can occur from such analyses.

For example, the comparison analysis may reveal the exis-

tence of a translation algorithm which could be used to

automate the transformation between knowledge

representations.

Problem Statement. Even though knowledge representation

researchers recognizes this need for rigorous evaluation,

they still have not taken the necessary and sufficient steps

towards defining, analyzing and comparing knowledge repre-
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sentations. Probably the most critical support for the

problem statement is that there are no acceptable formal

definitions for most of the common knowledge representation

schemes. Except for predicate calculus, the individual

knowledge representations previously described are not

rigorously defined. Because of this lack of definitions,

the authors of many published articles begin by providing

their own definition of the original representation that

they used as the basis for developing their specific repre-

sentation variant (77; 78). This lack of formal definition

has led to the generation of so many variations of these

common schemes that it has become difficult to determine

where the variation starts and the original definition ends.

For example, Brachman addresses the definition issue for

semantic networks in reference 79. In the case of produc-

tion rules, Davis and King point out that the variations

have become more an issue of style than differences (80).

An additional support for the problem statement is that

*while the literature abounds with articles on knowledge

representation applications, the majority of these articles

fail to present any supporting analysis (see Appendix B for

references). Even where some analysis has been accom-

plished, the results are often in a form that is not com-

patible for comparisons with the results of other analyses

(81; 82). Furthermore, articles identifying and analyzing

representation models which failed entirely are notably

absent.
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Further support for the problem statement is that there

is no acceptable common approach for comparing representa-

tions. In addition to mapping between representations,

there are other approaches for comparing representations

such as constructing "expressibility" metrics (83). How-

ever, knowledge representation researchers still cannot

agree on a basic set of characteristics for comparing

representations (84). No existing approach can handle the

over one-hundred dimensions suggested in reference 84.

Having identified the problem, the next step is to

determine an approach to solve the problem which is done in

the next section. Also, the next section contains an

overview for the remainder of this document.
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II. Dissertation Approach

"- General Concept

Recognizing the lack of analyses and the controversial

issues surrounding comparison characteristics, the goal of

this dissertation is not to develop another knowledge

representation as a solution to the problem. The goal is to

develop general insights about existing representations and

provide an approach by which future representations can be

compared. The conjecture is that formal language theory can

be used as the basis from which to generate compatible

* comparisons of knowledge representations. For the valida-

tion tasks associated with knowledge representation (see

Section I), there are analogous studies associated with

formal language theory. For example, the task of determin-

ing the relationships among representations is analogous to

the task of determining language/grammar equivalence. Other

analogous tasks are the identification of hierarchies of

representations (languages) and determining membership of a

representation (language) in the hierarchy.

Supporting Rationale. Even though the previous examples

in Section I implied the existence of a representation-

language tie, stronger rationale supporting the conjecture

is required. Therefore, before proceeding with the develop-

ment of the formal language approach, two additional cases

of this tie are examined in detail.

42

'S-=a*ppSS* C ' ~ ; \ x(. 5 .'



The first case involves Feder's use of a two-

' €dimensional language to describe line pattern images (85).

Using this language, he studied the characteristics of the

patterns via formal language theory. He used the hierarchi-

cal relationships of complement, union and intersection to

expand simple, easy-to-study languages into more complex

ones. While not presented in detail, he suggests the use of

known relationships in formal language theory to determine

time and size limitations, solvability of the recognition

problem, etc.

The second case involves the formal language relation-

ship of a subset of predicate calculus, known as quantified

propositional calculus. Hamblin proved that all the indi-

vidual statements of quantified propositional logic form a

context-sensitive language (86). Therefore, many character-

istics of context-sensitive languages could be used in

analyzing this subset of predicate calculus. For example,

the equivalence problem for a context-free language is

unsolvable (9:63). From the Chomsky language hierarchy (see

Theorem 1.01 of Section I), context-free languages are

contained within the context-sensitive languages. By

inclusion, it follows that the equivalence problem for

context-sensitive languages is also unsolvable. From this

unsolvability characteristic, it follows that it may not be

possible to prove that Hamblin's representation is equiva-

lent to any other type-i representation-language.
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The word "may" has to be used in this equivalence

conclusion because the equivalence finding for context-

sensitive languages is for the general case of all context-

sensitive languages. Because formal language theorists have

proven the existence of special classes of languages where

equivalence is solvable (34), it may be the case that

equivalence is solvable for some knowledge representation

languages contained in the type-i language-class. However,

Hamblin did not perform any language-class investigations.

Counterpoints. Even with this strong evidence support-

ing the conjecture, there are several counterpoints to

applying formal language theory to knowledge representa-

tions. One counterpoint stems from the position that

knowledge representations are said to deal with both syntax

and semantics (84). The association of semantics with

representations cause an "apples and oranges" situation to

exist between many representations. An example of this

association is represented by the relation between semantic

networks and production rules. The semantic-network repre-

sentation uses symbols to represent all known truths about a

*: given world. But, the production-rule representation uses

symbols to represent conflicting truths that can only be

resolved by using the working memory (situation data of

Figure 4). The fact that the meaning of the symbols repre-

sent truths or conflicting truths can only be determined by

the semantics assigned to the symbols.
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Smith provides an answer to this semantics concern (87).

In an attempt to develop a model of human memory based on

five levels, Smith defined the concept that everything below

the top level is just syntax. The only way to deal with the

top level as syntax is to go outside the human environment.

The conjecture of this dissertation is based on the

similar position that knowledge representation schemes are

syntactical structures within the computer system. The

semantics come into play entirely outside the computer. For

example, a semantic-network's relation is represented in the

computer as memory locations containing symbols (binary

equivalent) and memory pointers. The relation name itself

has no internal significance except that an internal pointer

can be found stored with the name symbols. The "meaning" of

a link name is assigned outside the computer system. The

computer process that is applied to determine when to follow

a path is nothing more than a syntactical pattern match on a

symbolic representation of the link's name.

Similarly, a production-rule's antecedent is stored as a

set of symbols and symbolically matched against the situ-

ation data. The fact that the antecedent may represent, for
example, a person's condition (see Figure 5) can only be

Sdetermined outside the computer system.

Furthermore, conflicting consequents like "patient has

disease A" and "patient does not have disease A" are two

-7V: different atomic symbol strings within the machine. The
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conflicting meaning of the strings can only be identified

, 8 outside of the computer system.

Also, any processes used to interact with the working

memory still involve only the primitive machine operations

of symbolic comparison and memory handling. By definition,

the meaning of the individual contents of working memory can

thus only be determined outside the computing machine.

Another counterpoint involves the handling of explicit

procedural knowledge within formal languages. Procedural

sequences cannot normally be handled by the unordered word

generation that a nondeterministic grammar provides. How-

ever, depending on how the procedures are defined, there are

ways tc handle this problem. Procedures can be generalized

*as any arbitrary computer program over a set of computer

programming languages. Thus, the computer programming lan-

guages are added into the overall knowledge representation

languages. That is, computer programming languages are

identifiable subsets of words contained in the overall

knowledge representation language.

If the allowable procedures are restricted to a special

set of computer programs, then the word order of the imple-

menting computer programming languages becomes important.

This word order can be handled in the following manner.

Each procedure in the set can be represented as an ordered,

finite group of words (with repeats) from the associated

implementing computer programming language. For each

S.' computer programming language, these ordered groups can then
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be considered as a single word in another language. These

new languages can then be added to the overall knowledge

representation language. Formal language theorists have

dealt with procedures defined in this manner via a class of

languages called trace languages (88).

A further counterpoint stems from the conjecture that

sa s that most of the knowledge representations are already

formally equivalent. This argument comes from using repre-

sentations to model Turing machines. Since representations

can be used to model both the knowledge-base and control

structure of Turing machines (see Figure 4), equivalence of

representations has already been shown to exist. Hence,

there is no need to study the equivalence issue any further.

The problem with this conjecture is that the equivalence is

determined by comparing the results generated by the overall

Turing machine model, not comparing the representations

themselves. That is, two different representation forms may

be used to model the same Turing machine. However, the two

representations used to model the knowledge-base part may

not be equivalent syntactically to each other.

This dissertation is based on the position that equiva-

lence of knowledge representations should be determined

separately from the rest of the components of a system that

uses them. That is, the knowledge-base (see Figure 4)

should be viewed from a meta-level where the individual

characteristics of the representation can be identified. At

this meta-level, the syntax of the representation can be
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best studied via formal language theory. Thus, characteris-

tics unique to the representations can be identified regard-

less of the system implementation. For example, it may be

the case that one representation form is easier for users to

maintain. However, another form may be more computationally

efficient for a certain problem-solving technique. By

determining the syntactical equivalences of the representa-

tions, it may be possible for users to maintain their repre-

sentations in one form and perform transformations into

other representations when required (centralized database

concept).

Approach

Having answered the major concerns with the disserta-

tion's concept, the details of the approach can now be

-discussed. The approach is to analyze knowledge representa-

tions by first converting them into a formal language and

then proving characteristics of the representations via

techniques of formal language theory.

Scope. Because there are many different knowledge

- representations and variations given in the literature (see

Section I and the references in Appendix B), attempting to

analyze every one within the scope of this study is an

insurmountable task. In order to reduce this effort to a

more manageable size, the scope was initially limited to the

set of the six individual representations previously
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described (predicate calculus, production rules, semantic

networks, frames, scripts and conceptual dependency).

Without a formal theory of knowledge representation, the

six individual representations cannot be guaranteed to be

members of a basis set of knowledge representation. There-

fore, analyzing all of them does not necessarily provide

coverage of the entire knowledge representation area. But,

credibility of the overall approach can be established by

using a few of the schemes from this constrained set.

From this set of six schemes, two were then selected:

production rules (excluding working memory or situation

data) and semantic networks. Production rules were chosen

because they are the most widely used knowledge representa-
tions in expert systems. Because of this use, the results

should be able to assist a large group of expert system

developers.

The production system's working memory is excluded as

part of the representation for several reasons. One reason

is that the contents of the working memory are unique to the

particular problem being solved. As previously noted, the

representations are being evaluated at a meta-level where

system control operation has been separated from the

representation.

Another reason the working memory is excluded is that

the production rules themselves already contain antecedent/

consequent clauses that involve the working memory. The

* "" embedded tests for antecedent truthfulness involve symboli-
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cally matching the contents of working memory with the

contents of a production rule. Hence, the working memory

will have to contain duplicate information. Furthermore,

the procedures that are called from rules to interact with

the working memory are already contained symbolically in a

production rule.

Semantic networks were chosen because in addition to

being used in expert systems, they are representative of a

completely declarative knowledge structure. Also the

semantic network is the extreme simplification of a frame.

In reference 62, this relationship was explicitly noted

where each node (frame) represented a subnetwork. In the

limit, each frame could represent a single node with the

node name contained in one slot, the relation name in

another slot and the link pointer in a third slot. Since

part of formal language theory deals with hierarchical

characteristics of languages, the semantic network provides

the foundation language upon which to expand into the frame

hierarchy.

The other knowledge representations were not selected

for a variety of reasons. Predicate calculus was not chosen

for investigation because it has been studied extensively

over the years by others and, as pointed out in the subsec-

tion on supporting rationale, the initial effort (formal

.4-...language mapping and typing) has already been completed by

Hamblin (86). Frames were not selected because, as noted

previously, frames can be considered to be an extension of
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the already chosen semantic networks. Scripts were not

a "investigated because they were shown to be just a special-

ization of the frame representation (55). Conceptual

dependency was not selected because it can be considered as

a special layered semantic network.

Overview. With the completion of the justification for

limiting the scope to production rules and semantic net-

works, the details of the actual approach used can now be

described. As stated previously, the basic approach is to

derive the formal language equivalent for each of the

selected representations and then evaluate and compare them

via formal language techniques. In order to derive their

language equivalent, there are some general results that

need to be derived from formal language theory first.

Formal language theory relies on the concept of recur-

sively enumerable sets. Because of the word "enumerable",

most theorists take for granted that the size of the lan-

guage space is countably infinite. There do not exist in

the literature direct formal proofs of this fact. There-

fore, the dissertation begins, in Section III, with the

construction of formal language space and the development of

theorems proving the countably infinite size of the space.

With this part of formal language theory established,

Section IV focuses on the definitions of the two selected

knowledge representations. Because of the numerous varia-

tions of production-rule and semantic-network definitions

given in the literature, an inclusion hierarchy of charac-
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teristics is generated for each representation. The char-

acteristics included in each hierarchy are those used by the

knowledge representation community to define particular

versions of each representation. Using the lowest level

characteristics from each hierarchy, formal definitions for

the "category-l" production rules and semantic networks are

developed.

By applying these category-i definitions, a formal

language equivalent for each of the two representations is

developed in Sections V and VI. Individual characteristics

about each of these language equivalents are proven. These

include the countably infinite cardinality of each of the

languages and their membership in Chomsky's class of type-2

languages. In addition, a word/symbol variation is applied

to redefine the specific form of the knowledge contained in

these representation-structures. The effects of this

variation upon the previously identified type-2 language

classification are determined.

In addition to the individual language's characteris-

tics, Sections V and VI also contain proofs of the charac-

teristics of special classes of category-i languages. These

characteristics include the countably infinite cardinality

of the classes, the type-2 language-bounds for languages

contained in each of these classes, the union and product

nonclosure properties of the languages in each of these

classes, and the inability of each of these classes to be an

Abstract Family of Languages.
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* With the development of the characteristics of the

category-i languages completed, these characteristics are

then used in Section VII to formally compare the two special

classes of representation-languages. The comparison

techniques used are those for determining equivalence of the

representations and determining transformation between the

representations (see Section I). For the equivalence case,

equivalences between certain subsets of production-rule and

semantic-network languages are proven to exist. However,

for the arbitrary case, equivalence of production-rule and

semantic-network representations at the category-i level is

proven not to exist. For the transformation case, any

arbitrary production-rule language contained in the special

class of category-i languages is proven to be transformable

into a semantic-network language. However, an arbitrary

semantic-network language contained in the special class of

category-i languages is proven to be unable to be trans-

formed into a production-rule language.

Given all of these findings for the production-rule and

semantic-network languages, the next step is to expand the

representation-definitions according to the inclusion hier-

archy developed in Section IV and determine the characteris-

tics for the top-category languages. In Section VIII, the

hierarchical expansion is performod with the help of several

conjectures. These conjecture focus on the existence of a

language equivalent at the top category and the equivalence

of the meanings (semantics) of the characteristics tabular-
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ized in Section IV. Using these conjectures, an arbitrary

' production-rule or semantic-network language contained 'n

the top-category classes of languages is shown not to be

contained in Chomsky's class of type-2 languages.

Additionally, the top-category classes of production-rule

and semantic-network languages are shown not to be equiva-

lent. Also, each of these top-category classes is shown not

to be an Abstract Family of Languages. Furthermore, an

arbitrary top-category production-rule language is shown to

be able to be transformed into a semantic-network language.

However, an arbitrary top-category semantic-network language

.4 is shown to be unable to be transformed into a

-J production-rule language.

Using these characteristics, conclusions are reached in

Section IX regarding the use of the knowledge representa-

tions of production rules and semantic networks.

Recommendations are then provided in Section X on how to

expand and apply the results of this analysis. Suggestions

are also presented on how to add additional analysis tech-

niques to the approach. Finally, comments on the

contributions of this effort are discussed.

Reader's Guidance

Because of all of the interrelated findings of this

dissertation, some assistance needs to be provided to help a

reader follow through the dissertation and understand the

*' ' :., information contained within various subsections. For this
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dissertation, this assistance takes the form of a flow

* '- diagram, cross-reference lists and examples. Because of the

dependence of the theorems and proofs used in one section of

this dissertation on those used in a previous section, the

dissertation should be read in the order of the section

numbers. However, a reader may follow the production-rule

or semantic-network language-development alone by referring

to Figure 11. The vertical arrows indicate the sequence

that should be followed in order to understand a particular

section. The horizontal arrows indicate those sections that

provide support to a particular section. However, the

reader is not required to understand the entire contents of

the supporting section in order to understand the particular

section that the horizontal arrow indicates.

For example, to understand the semantic-network

language-development contained in Section VI, a reader

should read Section IV in detail but can refer to portions

of the production-rule language-development contained in

Section V. However, for the production-rule language-

development contained in Section V, Section VI can be

ignored.

In addition to this flow diagram, cross-reference lists

of definitions, theorems, corollaries, conjectures and

propositions are provided in the beginning to help the

reader. Many of the proofs refer to other definitions,

theorems, etc., by only the item identification number and

section. These lists provide the reader a quick page

55



Appe ndix S ecti on Appndix

7Section

Appendix Section AppendixC II

SSect ion% " S e c t i o n

V VI

SSect ion
VIII

"" ISectionJ4.,

Figure 11. Dissertation Flow Diagram
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reference should a review of the identified item be

required.

Wp While the flow diagram and cross-reference lists help

the reader locate needed information, many example cases

help the reader better understand the information that is

p..
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presented. For some of the more complex proofs, example

cases are presented within the steps of the proof. Even

though these examples occur in the proof, the reader is

cautioned not to falsely conclude that the proof was done

"by example." If a counter-example type of proof is used,

this fact is noted at the beginning of the proof.

With this understanding of the document's structure, the

reader may now proceed to the first set of findings: the

size of language space.

.
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III. Language Space

After a thorough review of the formal language litera-

ture (see Appendix A), many theorists were found to be using

several unproven assumptions about the size of languages

within the proofs of their own theorems. One assumption

they use is that because all languages are recursively

enumerable, any infinite length language must contain a

countably infinite number of words. Another assumption they

use is that any infinite hierarchy of languages must contain

a countably infinite number of languages. While these

assumptions are not false, the theorists missed related

size-characteristics that could only be revealed by support-

ing proofs of these assumptions. As a result, some of their

own theorems have proofs which are more complex than is

necessary. Since several findings of this work depend

directly on the length and number of languages, these

assumptions were rigorously proven so that all the size

characteristics could be identified.

Because these assumption proofs depend a great deal on

definitions and theorems already provided by other sources,

a subsection is given herein which lists these required

items. For the theorems of others, their proofs are not

provided herein. The reader is referred to the cited

reference for those proofs. Even though supporting details

' are provided in the development, the reader is assumed
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%" to have background in set theory, formal language theory,

recursive function theory and Turing machines. Additional

information on these subjects can be found in references 8,

9, 89, 90, 91, 92, 93, 94, 95 and 96.

Supporting Definitions and Theorems

The definitions and theorems contained in this subsec-

*tion are presented in an order which supports their later

use. In order to provide sufficient information to under-

stand some of these definitions and theorems, related

definitions and theorems are also given. However, only the

main definitions and theorems are referred to in the actual

proofs. Therefore, a well informed reader may skip to the

next subsection and only refer back to the specific defini-

tions and theorems that are cited in the proofs.

Since the definitions of various grammars were previ-

*ously given in Section I (see Definitions 1.02-1.06), they

are not repeated in this subsection. However, for consis-

tency, the same symbols used in the tuple form of the

grammar definition, (T, NT, S, P), are also used herein to

represent terminals, nonterminals, start symbol and rewrite

production-rules, respectively. Because the terms "word"

and "language" are associated with grammars, their defini-

tions need to be provided at the outset.

* -Definition 3.01: Let "Z" be any finite set of symbols called

an alphabet. These symbols are called the

.:.":~ letters of the alphabet (9:2).
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Definition 3.02: A word (string) over Z is any finite,

concatenated sequence of letters from Z

(with repeats allowed) (9:2).

Definition 3.03: The empty word, "e", is the word consisting

of no letters (9:2).

Definition 3.04: The closure of Z, "Z ", denotes the set of

all words over Z including e (9:2).

Definition 3.05: The empty set, "V", is the set containing

no words (9:2).

Definition 3.06: A word, "w", that is an element of Z is

generated by a grammar, "G", if there is a

finite sequence of words over NTJZ such

that w(0) is equal to a symbol sCS and

w(n)=w and w(i+l) is obtained from w(i),

0_<i<n, by application of one of the produc-

tion rules in the production rule set P.

The terminal set of G is equal to Z in this

definition (9:41).

Definition 3.07: The set of all words that can be generated

by G is called the language generated by

G (9:41).

Now that a language has been defined as a set of words,

set-theory definitions and theorems are necessary for

further refinement.

Definition 3.08: Let A be a set. The power set, "PS" of A

is the set of all subsets of A, including A
and # (90:92).
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Definition 3.09: Cardinal numbers are the numbers used to

measure the size (number of elements

contained within) of a set (90:279).

Definition 3.10: A set is said to be finite if its cardinal

number is a natural number. A set that is

not finite is said to be infinite (91:103).

Theorem 3.01: The set, "N", of natural numbers is an infi-

nite set (90:276).

Definition 3.11: Aleph null, "NO", represents the cardinal-

ity of N (90:280).

Definition 3.12: A set A is of cardinality NO if there is a

bijection (see Definition 3.15) from

N to A (90:280).

Definition 3.13: A set A is countably infinite if the

cardinality of A is NO. A set is countable

if it is finite or countably infinite. The

set A is uncountable or uncountably infi-

nite if it is not countable (90:280).

Theorem 3.02: The subset of real numbers over [0,1] is not

countably infinite (90:284).

Definition 3.14: A set A is of cardinality "c" (uncountably

infinite) if there is a bijection from

[0,1] to A (90:286).

Theorem 3.03: Let A be a finite set. Furthermore, let "JAI"

denote the cardinal number of A. Then,

IAI<N0<c (90:291).
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Theorem 3.04: Any subset of a countable set is

countable (91:39).

Theorem 3.05: The union of a countable set of countable

sets is countable (91:41).
*

Theorem 3.06: The set Z is countably infinite for any

finite alphabet Z (90:282).

Theorem 3.07: If Z is a finite, nonempty alphabet, then the

cardinality of PS(Z ) is c (90:285).

Theorem 3.08: Every infinite set contains a countably

infinite subset (90:282).

Definition 3.15: A one-one correspondence between two sets

exists if a pairing of the elements of
4

either set with the elements of the other

set exists. A bijection is a one-one

correspondence (91:36).

Definition 3.16: Two sets, A and B, are said to be equipo-

tent if and only if there exists a one-one

correspondence between them (91:37).

Theorem 3.09: A necessary and sufficient condition for a set

A to be infinite is that there exist at least

one proper subset of A which is equipotent to

*A (91:104).

Theorem 3.10: The set of all finite subsets of a given

countably infinite set is countably
S

infinite (91:42).

This completes the basic supporting information neces-

sary to establish characteristics of a given language. But,
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additional theorems and definitions are required to estab-

lish the relationship of languages. One of the required

theorems is the Chomsky inclusion hierarchy of languages.

Since the Chomsky inclusion hierarchy was given Theorem 1.01

of Section I, this theorem is not repeated again. However,

_. specific definitions and theorems regarding languages and

Turing machines are provided to complete the background for

the language size proofs.

Definition 3.17: A set of words, A, over a finite alphabet,

Z, is recursively enumerable if there is a

Turing machine which accepts every word in

A and either rejects or loops for every
,*

word in Z -A (9:38).

Definition 3.18: A set of words, A, over Z is recursive if

there is a Turing machine which accepts

every word in A and rejects every word in

Z -A (9:39).

Definition 3.19: A set of words over Z is a regular set if

the set is generated recursively by a

finite number of applications of the

following steps:

1. Every finite set of words over Z

(including c) is a regular set.

2. If U and V are regular sets over Z

so are their union and product.

3. If U is a regular set, so is its

closure, U (9:2).
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Definition 3.20: A set of words over Z is called a type-i

language (i=0,1,2,3) if it can be generated

by a type-i grammar (8:143).

Theorem 3.11: A set of words over Z is recursi-vely enumer-

able if and only if it is a type-0

language (8:143).

Definition 3.21: A set is regular over Z if and only if it

is accepted by some finite automaton over

Z (9:7).

Definition 3.22: A function f:Z ->Z is Turing realizable if

there exists a Turing machine, M, such that

M has a halted computation(e,qI,#,w)=>

( ,q,#,v) if and only if f(w)=v, and

M fails to halt for an input tape, #w, if

and only if f(w) is undefined (92:445).

Definition 3.23: Let N represent the natural numbers. A

function f:Nm->N is Turing computable if

there exist a Turing machine that realizes

the function g:[#,lI ->l , where

xlg(iXl# ... #lxm

1y if f(xl,. xm) y

undefined if f(xl,..,xm) is

undefined (92:463).

Definition 3.24: A subset, K, of the natural numbers, N, is

Turing enumerable if either:

o' 1. K=

or
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2. There exists a Turing computable

function, f:N->K, that maps N onto

K. We say f is an enumeration of K

in this case. Using Godel number-

ing this can be extended to an

arbitrary set X= Z ,where Z is any

alphabet. Set X is Turing enumer-

able if the set [Gd(w)lwC X) is

Turing enumerable. Gd is the Godel

numbering of Z (92:487).

Theorem 3.12: Type 3 languages are the finite state

languages (8:150).

Theorem 3.13: There exists a Turing computable function,

W:NXN->N, such that for all x,y,z, W(z,x)=y

if and only if machine M(z) in an enumera-

tion of Turing machines computes

f(x)=y (92:491).

Language-Space Size

With this background established, the size of language

space can now be determined. First, the space needs to be

constructed using some of the definitions and theorems of

the previous subsection.

Let Z represent an arbitrary finite alphabet per Defini-

tion 3.01. Then, applying Definitions 3.02, 3.03, 3.04,

3.05, 3.06 and 3.07 and Theorem 3.11, let "L" be defined as

a set which contains all the languages generated by all

*.. *.
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possible grammars over Z. That is, L contains all type-0

languages over Z.

Next, applying Definitions 3.04 and 3.08, let "D" be

defined as a set that contains all possible subsets of Z

That is, D=[PS(Z )1.

By these definitions, L'CD since L is also a set

containing subsets of words from PS(Z ). At this point, it

cannot be determined whether or not L is a proper subset of

D. However, a size characteristic can be established for

each formal language in L.

Theorem 3.14: The cardinality of every set of words dCD is

countable.

Proof: From Theorem 3.06, the set of all finite words

Z is countably infinite. Since D contains

all possible subsets of these words, Theorem

3.04 can be applied to conclude that each

element in D is countable. Q.E.D.

Corollary 3.01: The cardinality of every language IEL is

countable.

Proof: By definition, LCD. Therefore, for every

language ICL there must exist a d CD where

l=d. By Theorem 3.14, each 1 is also

countable. Q.E.D.

Instead of working from the uncountably infinite set D

(see Theorem 3.07), the size of L can be determined by

working from the empty set.

,.6
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Theorem 3.15: The set of formal languages over Z is not

. >- empty.

, Proof: From set theory, the cardinality of c is zero

but the cardinality of the set [01 is one.

From Definition 3.19, 0 is a regular set.

From Definition 3.21, a regular set must be

accepted by a finite automaton. Applying

Theorem 3.12, 0 is a type-3 language. There-
fore, if all grammars generated only the empty

-N set, L must still contain 0 as a language

member. From Definition 3.08, D also contains

" as a member. Hence, ILI00. Q.E.D.

Theorem 3.16: The cardinality of the set L of languages over

Z is not finite.

Proof: Applying Theorems 3.06 and 3.10, the set of

all finite subsets of Z is countably infi-

nite. From Definition 3.19, every finite set

is a regular set. Applying Definition 3.21

and Theorem 3.12, these regular sets are

members of the type-3 languages over Z. From

Chomsky's inclusion hierarchy (Theorem 1.01 of

Section I), type-3 languages are a proper

subset of type-0 languages. Since L contains

4. all the type-0 languages by definition, L also

contains these finite languages. Therefore,

applying Definitions 3.09 and 3.10, the

.,•.- cardinality of L cannot be finite. Q.E.D.
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.% Recognizing that the finite sets have been accounted for

in the type-3 languages, a theorem and a corollary regarding

the cardinality of the each of the remaining sets of words

and languages can be proven.

Theorem 3.17: For each dC D'and d type-3 languages, then d

has countably infinite cardinality.

Proof: By Theorem 3.14, each d is countable. Apply-

ing Definition 3.13, only the countably

infinite sets remain. Q.E.D.

Corollary 3.02: For each language 1CL and i( type-3 lan-

guages, then 1 has countably infinite

cardinality.

Proof: By definition, LCD. Therefore, for every

language 1C L there must exist a dC D where

1=d. Applying Theorem 3.17, 1 has countably

infinite cardinality. Q.E.D

Even though L and D have been shown to contain a count-

ably infinite subset of languages, conclusions regarding the

cardinality of L cannot yet be reached. This is because

Theorem 3.08 shows that a countably infinite subset exists

in both countably infinite and uncountably infinite sets.

Turing machines are needed to resolve this problem.

Theorem 3.18: The cardinality of the set of formal lan-

guages L over Z is countably infinite.

Proof: In the proof of Theorem 3.16, L was found to

contain all the finite languages. Applying
. .J.

Theorem 3.10, these finite languages form a
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countably infinite subset of L. Therefore, L

N " must be at least countably infinite in size.

Now, from Definition 3.17 and Theorem

3.11, Turing machines accept type-0 languages.

Depending on how the reject or loop criteria

is interpreted (e.g. one machine could reject

only one nontype-0 set while another could
'

reject several different nontype-O sets), it

is possible for more than one Turing machine

to accept a given type-0 language. However,

Definition 3.17 states that at least one

Turing machine exists for every type-0 lan-

guage. Therefore, applying Theorem 3.13,

there are at most a countably infinite number

of Turing machines that could accept type-0

languages. Hence, there are at most a count-

ably infinite number of type-0 languages.

Since L is bounded both from above and

from below by countably infinite cardinality,

L must be countably infinite in size. Q.E.D.

With L being countably infinite, proper inclusion of L

in D can now be proven.

Theorem 3.19: The set L of formal languages over Z, is a

proper subset of D.

Proof: From Theorem 3.07, D has cardinality c

(uncountably infinite). On the other hand,

"A Theorem 3.18 has shown L has cardinality NO
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(countably infinite). Recalling that L was

* defined such that it is a subset of D and

applying Theorem 3.03, it follows that L must

be a proper subset of D. Q.E.D

The proper inclusion of L in D supports the existence of

nonrecursively enumerable sets. Formal language theorists

ha e spent considerable effort in developing nonrecursively

enumerable sets to prove the inclusion of L in D. One

example of such a set is the countably infinite set repre-

senting the class of total recursive functions (92:562).

However, theorists sometimes propose a nonrecursively

enumerable set that is later proven to be recursively

enumerable. Appendix C contains a proof that a nonrecur-

qi sively enumerable set constructed by Manna is actually

recursively enumerable (9:39).

Now that set of formal languages over a single alphabet

has been proven to be included in D and has countably

infinite cardinality, all that is left to do is to determine

the size of the set of languages over all possible finite

alphabets.

Theorem 3.20: The set of formal languages over all finite

alphabets has countably infinite cardinality.

Proof: From AFL theory, all the finite alphabets for

formal languages are obtained from a countably

infinite alphabet (97:33). From Theorem 3.10,

the set of possible finite alphabets has

countably infinite cardinality. Since every
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set has the empty set 4 as a finite subset,
this countably infinite set of alphabets must

contain . However, by Definition 3.01, an

alphabet cannot be the empty set. Therefore,

the empty set must be removed from this group

of alrhabets. By applying the f(x)=x-i

mapping on the indexes of the remaining finite

sets, there is still a countably infinite

number of finite alphabets remaining.

Now, since theorem 3.17 established that

for a single, finite alphabet a countably

infinite number of type-0 languages exist, let

LL(i) represent the countably infinite set of

type-0 languages for the ith alphabet. Then,

perform the set union operation over the LL(i)

language sets. Since there are a countably

infinite number of alphabets, i ranges over

the natural numbers. Therefore, it follows

from Definition 3.12 and Theorem 3.05 that the

resulting set has countably infinite

cardinality. Q.E.D.

With the size of the set all formal languages estab-

lished, the formal language space analysis is complete.

Because languages and grammars are related, an analysis of

the size of grammar space should also be provided. Since the

main results of this dissertation do not rely directly on

theorems related to grammar space, the grammar-space
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analysis is given in Appendix D for reference. Having

established the size of formal language space, the investi-

gation of the production rules and semantic networks can now

begin.
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IV. Representation Definitions

With the size of the language space established as countably

infinite, the first step towards developing the formal

representation languages is generating definitions for

production rules and semantic networks.

Definition of Production Rules

The literature abounds with different descriptions of

production rules (see references 5, 40, 41, 50, 51, 56, 66,

73, 74, 80 and Appendix B for examples). Trying to write a

definition that would contain all the unique characteristics

of each variation could result in numerous pages of confus-

ing and possibly conflicting details. However, it was noted

that these characteristics could be grouped into categories

based upon the complexity of the knowledge that was to be

represented. Each category could then be described by a

statement that covered the member characteristics.

The results of this classification for the previously

noted references are given in Table II and Table III.

Because of the different natures of the "test only" ante-

cedent and the "action" consequent of a rule, separate

categorization of each was necessary. Additionally, the

categories were ordered from less complex characteristics to

more complex. Recalling that inclusion hierarchies are

studied in formal language theory, the categories themselves

were also established as such a hierarchy to support the
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Table II. Categories of Antecedents of Production Rules

Category Characterization

The antecedent contains a single string of
symbols representing a single fact where
existence of the fact in the database
indicates that the fact is true.

2 The antecedent contains conjunctions of
single facts [e.g. (Bill AND Cat)].

..

3 The Lntecedent contains conjunctions of
total predicates operating on facts.
[e.g. Red(ball) AND Owner(Joe, bat)].

4 The antecedent contains Boolean
combinations (including nesting) of
computationally primitive operations of
matching and detecting.

5 The antecedent contains unit (?X in LISP)
and segment ($X in LISP) free-variables.

6 The antecedent can test values assigned to
facts.

7 The antecedent can call complex functions
4- embedded in the literals to determine the

truth value.

8 The antecedent can alter the database of
facts without firing any rules.

Note: The categories are specified in an inclusion
hierarchy form: 8D7D6D5D4D3D2D 1

language development goal. That is, the characteristics of

a lower numbered category are properly included in those of

a higher numbered category (see Figure 12). Therefore, as

the category number increases, the number of characteristics

and the complexity of the characteristics that a rule

.c. contains also increases. The top category level
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Table III. Categories of Consequents of Production Rules

Category Characterization

1 The consequent contains a single string of
symbols representing a single fact which
is added to the database as a true fact
when the antecedent is true.

2 The consequent adds multiple facts to the
database with use of the AND operator.

3 The consequent contains unit (?X in LISP)
and segment ($X in LISP) free-variables.

4 The consequent can perform substring
replacement within a given fact.

5 The consequent can perform value
assignment actions to facts.

6 The consequent can call procedures and
other rules.

7 The consequent can manipulate the database
and produce side effects which do not
involve the rules.

Note: The categories are specified in an inclusion
hierarchy form: 7D6 D5 D4 D3 D2 D1

indicated in Figure 12 represents category 8 for the antece-

dent hierarchy and category 7 for the consequent hierarchy.

While this classification effort condensed the set of

characteristics, a definition which would cover all the

possible combinations of antecedent categories with conse-

quent categories would still be very complex. However, by

following the techniques used by Feder (85), this complexity

problem can be solved. Feder achieved success by studying a

less complex language to determine some of the
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characteristics of more complex members of the same language

b: hierarchy. Therefore, the solution is to utilize a similar

~approach and develop a definition of production rules based

~on 1the "category-i" characterizations of Tables' II and III.

%.% This definition can then be used to generate a less complex

..... language version.

' ' iHaving selected the category level of the definition,

the form that is used in the definition to represent the

characteristics needs to be chosen. While generating the

categories from the previous references, it was noted that
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the most common form used in defining a production rule is a

"-. " tuple form [e.g. a->b, (a,b)]. Therefore, to maintain

compatibility with the literature and formal language

.2 theory, a tuple form is chosen.

Now that the form selection is complete, the definition

of production rules that have only category-I characteris-

tics is given. The actual number of rules contained within

a representation is investigated in Section V.

Definition 4.01: For any nonempty, finite alphabet Z, a

production rule that has only category-i

characteristics (see Tables II and III) is

defined as a 3-tuple. The 3-tuple is of

the form "amb" where "a" and "b" represent

individual facts, "m" is a special symbol

disjoint from Z which represents the

implies operator, a,bCZ and a#b. The

form amb reads"a implies b."

In order to better understand the definition, the

specified restrictions need to be explained. The concate-

nated word-form of the 3-tuple was selected in order to

support the later development of a language version. By not

using delimiters between the elements of the 3-tuple to show

separation, later language development efforts would not

have to be involved with blank spaces and commas within a

production-rule word. However, by constraining m to be

disjoint from Z and to be placed as the center element
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within the 3-tuple, m can act as a separator as well as an

operator if necessary.

Within this 3-tuple word-form, several restrictions

involving the facts contained in the antecedent and conse-

quent need explanation. First, single facts were not

constrained to any limited set of words over Z so that the

generality of the definition could be maintained. Because

programmers arbitrarily assign symbol strings to represent

facts, one may use "car" to represent a specific fact while

another may use "auto" to represent the same fact. There-

fore, the definition must provide the entire set of symbol

strings for the programmers use.

Second, even though all words over Z were represented as

facts, the empty word e was not added to the set because of

its concatenation property: ea=a or ae=a. Since the 3-tuple

was restricted to be a concatenated word-form, a grammar

generating the 3-tuple word with an alphabet containing e

could produce words such as "mb" or "am" instead of "emb" or

"ame." These generated words are not 3-tuples and so are

not production rules by definition.

Finally, when using any two of the previously con-

strained individual facts within a given rule, system

operating efficiencies dictate that the facts be disjoint.

Rules which have equal antecedent and consequent entries

could cause a system to continuously fire the rule after its

initial activation. Since a fact is true once it is placed

in the database, adding multiple copies of the same fact to
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i the database does nothing to increase its truth value.

4J_ *Therefore, this continuous firing and updating action would

cause unnecessary computational overhead during the system's

operation.

Definition of Semantic Networks

Because semantic networks also have widely varying

definitions (see references 5, 52, 53, 54, 62, 65, 68, 70,

71, 72, 73, 74, 78, 79 and Appendix B), the same methodology

* that was previously used for developing the production-rule

definition can also be used to develop the semantic-network

definition. Therefore, applying the same categorization

*approach, semantic networks can be characterized as shown in

Tables IV, V and VI. Because of the differences between

nodes and links, two separate hierarchies were constructed.

Additionally, a hierarchy was developed to handle the

combinations of links which do not depend on the

characteristics of the links being combined.

Continuing to apply the same methodology, the semantic-

network definition is based on the category-i characteriza-

tions provided in the three associated tables. However, the

form used in the definition is not based on the most common

form as was the case for production rules. The most common

form used to define a semantic network is a directed graph

which has labeled nodes and links. Another form used is a

tuple form which represents the relationship between only

two nodes [e.g. (node-i, relation, node-2)]. Recalling that
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Table IV. Categories of Nodes of Semantic Networks.

Category Characterization

1 A node contains a single string of
symbols representing objects, categories,

concepts, sets, etc., but does not
contain relations.

2 A node contains a single string of symbols
representing relations, predicates,

A attributes or values.

3 A node contains unit (?X in LISP) and
segment ($X in LISP) free-variables in
support of quantification representation.

4 A node contains functions, procedure calls,
rules or special symbols.

5 A node contains prototypes, depictions,
roles or descriptors.

Note: The categories are specified in an inclusion
hierarchy form: 5D 40 3 2Z)

the goal of this dissertation is to compare the production-

rule and semantic-network languages, the task can be made

easier if the words in the languages are of similar form.

Therefore, the tuple form is chosen for the semantic-network

definition.

With this groundwork completed, the definition of

semantic networks that have only category-i characteristics

is given. As was the case for production rules, the size of

the semantic network is investigated in Section VI.

80



* Table V. Categories of Individual Links of Semantic
Networks

Category Characterization

1 A link represents a binary relation
between two nodes where the relation can
be thought of as a predicate of the form
Relation(tail node, head-node).

2 A link represents a pointer without any
relation such as an attribute-value
poifnter or a pointer associated with a
relation-node.

3 A Link represents an n-ary relation.

4 A link represents exception cases.

Note: The categories are specified in an inclusion
hierarchy form: 4D3 D2 Dl

Table VI. Categories of Link-Combinations of Semantic
Networks

Category Characterization

1 The links are treated as stand-alone
independent entities.

2 The links are combined by disjunction,
conjunction and negation.

3 The links are combined to represent the
- antecedent and consequent of implications.

Note: The categories are specified in an inclusion
hierarchy form: 3-D2D1
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, ~ Definition 4.02: For any two disjoint, nonempty, finite

alphabets, Y and Z, a semantic network that

has only category-i characteristics (see

S Tables IV, V and VI) is defined as a

collection of 3-tuples. Each 3-tuple is of

the form "arb" where "a" and "b" represent

the node labels, "r represents the rela-

tion between the nodes, a,bCZ + , rCY + and

a~b. The form arb reads "a is related to

b by r." That is, the link arrow goes from

a to b.

As was the case for production rules, the semantic-

network definition can also be better understood if the

restrictions are explained. Except for the naming conven-

tions used, the explanations for the restrictions of the

3-tuple to a concatenated word-form, the placement of r, the

use of all the words over Z for node labels, the use of all

words over Y for the relations and the elimination of the

empty word are identical to those given for similar

restrictions in the definition of a production rule.

Therefore, they will not be repeated here. The reader is

referred to the paragraphs following Definition 4.01 for

these explanations. However, there are two additional

restrictions that need explanation.

The first is the restriction that the node labels and

__ relations be constructed from disjoint alphabets. This

restriction comes directly from the category-i characteris-
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tics given in Table IV. There, a node was restricted not to

contain a relation. By using disjoint alphabets, nodes can

be guaranteed not to contain any words that are symbolically

identical to the relation-words.

The second and final restriction requiring explanation

is the computational efficiency of a#b within any given-C.i
3-tuple. Recall that the inference mechanism of spreading

activation (see Section I) relies on the capability to

follow links throughout the network. If a node was encoun-

tered that was related directly to itself, the activation

procedure could loop forever on that path. Therefore, if

nodes of this type were allowed, additional computational

overhead would have to be expended in order to prevent the

activation procedure from entering these loops.

Related Definitions

The definitions of production rules and semantic net-

works are not the only definitions used herein. According
V

to Definitions 4.01 and 4.02, a production rule requires a

set of facts and a semantic network requires a set of node

labels and a set of relations. Because the terms

"knowledge-words" and "knowledge-languages" are used later

when referring to these sets, separate definitions of these

terms are needed for clarity.

Definition 4.03: For a production rule, a knowledge-word is

a single fact-word contained in the set
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* of facts and a knowledge-language is the

entire set of fact-words.

Definition 4.04: For a semantic network, a knowledge-word is

either a single node-label word or a single

relation-word and the knowledge-language is

the union of the node-label and relation

sets.

Having generated the necessary definitions of production

rules and semantic networks, the formal language equivalents

of these two knowledge representations is developed.
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V. Production-Rule Language and Characteristics

Given these category-i definitions for production rules

and semantic networks, the formal language and characteris-

tics for each of these representations can now be developed.

Because of the extensive effort required to determine

language equivalents, each representation is covered in its

own section. Production rules are covered first.

Production-Rule Language

There are two different approaches that are used to

determine the language membership of this production-rule

representation. The first approach is to investigate a set

of the finite, yet variable length, strings amb generated by

concatenation of the symbols from the alphabet ZU [m). In

this case, the characteristics (e.g. word membership in the

set of facts, individual consideration of symbols making up

a fact-string, language-type of the fact-set) of the indi-

vidual fact-strings, a and b, are evaluated along with the

representation's amb strings over Zu(m). In other words, the

representation's structure is not considered to be separated

from the facts it contains.

The second approach that will be applied is to use the

abstract 3-tuple form of the production-rule strings and

consider each of these strings to be of a fixed length,

three. Here, each individual fact is considered as a single

symbol in the language-alphabet. Individual characteristics
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of facts are hidden by the abstract nature of this knowledge

representation's structure. Only the size of the fact-set

is considered.

Case I: Facts are Words. The best place to start the

production-rule language development is at the individual

word level where consideration is given to the

characteristics of the fact-set.

Theorem 5.01: Each production rule amb constructed under the

constraints of Definition 4.01 of

Section IV is a finite word over ZU [m).

Proof: From Definitions 3.01 and 3.02 of Section III,

a word over any nonempty, finite alphabet is

finite in length. From Definition 4.01, Z was

defined to be nonempty and finite and m was

defined to be a single symbol. From set

theory, the union of two finite sets remains

finite and so the new alphabet, ZU (m, is also

nonempty and finite.

In addition to this finite alphabet, each

a and b are also finite in length (see

Definitions 3.03 and 3.04 of Section III).

Since the sum of finite numbers remains.'

finite, the length of amb is finite.

Therefore, each amb over Z U[m) meets the

requirements for being a finite word. Q.E.D.

Using these individual rule-words, let "PR" represent

the set consisting of all these words for a given Z.
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CO Cl C2 C3 .....

COm XX C0mCl C~mC2 C0mC3 .....

Clm ClmC0 XX ClmC2 ClmC3 .....

C2m C2mC0 C2mCl XX C2mC3 .....

C3m C3mC0 C3mCl C3mC2 XX

- ........................ e.....r.

............................ e

Figure 13. PR Word Matrix

That is, PR contains all possible 3-tuples over Z Utm] meeting

Definition 4.01 of Section IV. The size characteristic of

this word-set can be determined from the following theorem.

Theorem 5.02: The set PR consists of a countably infinite

number of words.

Proof: From Theorem 3.06 of Section III, the set Z

is countably infinite. Recognizing that

Z+=Z -(e) and using the mapping f(x)=x-I on the

natural numbers, it follows that the set Z is

also countably infinite.

Now, construct the matrix equivalent of

the PR set as shown in Figure 13. The symbols

CO,CI,... represent the words contained in Z +

"2- "and the symbol m is the implies relationship.
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4.7

The symbol "XX" represents those words which

are not contained in PR due to the a~b

constraint.

For this matrix, it follows from the size

of Z+ that there are countably infinite rows.

Because there is exactly one word per row

where a=b, a set consisting of all the XX

words must also be countably infinite. Using

the mapping of f(x)=x-i once again, each row

is found to still contain a countably infinite

number of entries when the a=b word is

removed. Since PR is equivalent to the union

of the rows of this matrix with the XXs

removed, it follows from Theorem 3.05 of

-Section III, that PR consists of a countably

infinite number of words. Q.E.D.

Now that PR has been shown to contain a countably

* infinite number of formal words, the next step is to

classify PR as a formal language. Recalling that formal

language theorists have shown the existence of countably

infinite hierarchies of languages within a given language-

type (Chomsky) as well as across types (AFLs), trying to

establish that PR resides in one of the known hierarchies

could take a considerable number of "test and evaluate"

actions. Because of the existence of machines (e.g. Turing,

finite automata) that accept only the languages of a given

type (93), the set PR is only evaluated against the four-
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level Chomsky hierarchy (8). Formal language theorists have

also developed a significant amount of characteristics about

languages residing in this finite hierarchy.

To determine the language placement of PR in this finite

hierarchy, the impact on the language-type of PR caused by

the constraints on the facts (see Definition 4.01 of Section

IV) is investigated. First, all of the constraints are

relaxed and the language-type of a set of production rules

is determined. Then, the constraints are applied one at a

time and the language-type is re-evaluated. To begin, the

fact-set is allowed to contain the empty word e and in a

given amb string a is allowed to equal b.

Theorem 5.03: The set of all production-rule words, each

word of the form amb, where Z is a nonempty

finite alphabet, a,bC Z and m is a single

symbol disjoint from Z, is a type-3 language.

Proof: With all of the previous restrictions on the

set of facts eliminated, the set of

production-rule words can be represented as

the concatenation of the words of three sets:

Z [mZ. Because Z is a finite alphabet and m

is a single symbol, it follows from Definition

3.19 of Section III that Z and [m] are regular
.*

sets and so is Z Applying this regular setp

definition again, Z [mZ is found to be a

regular set. Finally, applying Definition

3.21 and Theorem 3.12 of Section III to this
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i.4

concatenated set, this set of production-rule

words is found to be a type-3 language.

Q.E.D.

Now that the unrestricted case has been proven to be a

type-3 language, the empty word constraint is applied and

the language-type is re-evaluated.

Theorem 5.04: The set of all production-rule words, each

word of the form amb, where Z is a nonempty,

-. finite alphabet, a,bCZ + and m is a single

symbol disjoint from Z, is a type-3 language.

Proof: In this case, the set of production-rule words

can be represented by the concatenation of

three sets: Z +mJZ + . In reference 94, pages

30-31, Z + is proven to be a regular set.

Therefore, applying Definition 3.19 of Section

III, Z +[mZ + is a regular set. From Definition

3.21 and Theorem 3.12 of Section III, this set

of production-rule words is a type-3 language.

Q.E.D.

From this theorem, the removal of the empty word from

the set of facts is seen not to affect the language-type of

the set of production rules. However, this is not the case

for the a~b constraint as is seen in the next two theorems.

Theorem 5.05: The set of all production-rule words, PR,

where each word amb meets the requirements of

Definition 4.01 of Section IV, is not a type-3

language.
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Proof: The PR set is identical to one of the "center-

marker" languages studied by Haines (98):

CM=[xcylx, ycR, R is a regular set over Z,

x#y, c9Z). However, Haines did not prove

directly that some CM languages are not

type-3. Therefore, the PR case will have to

be proven in detail.

For this proof assume that PR is a regular

set. From the regular set closure properties

(92:186), if PR is a regular set then so is

its complement; CR=EZUlm)] -PR. If the

complement CR is a regular set, then so is its

intersection with the regular set of Theorem.*
5.03; IR=CRnlamba,bCZ , mEZ].

Now, this last intersection yields

IR=[xmxlxC Z 1. By applying the iteration

theorem of regular sets to IR (96:47), if IR

is a regular set, it must contain words of the

form "xmy" where jxjIiyj. But, IR contains

only words where jxi=iyj • Hence, IR cannot be

- a regular set.

The fact that IR is not a regular set

indicates that PR is not a regular set. This

is determined by following the steps used to

construct IR in reverse. Since IR is not a

regular set, then CR cannot be a regular set.

Since CR is not a regular set, then PR cannot
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be a regular set. Hence, PR is not a type-3

language. Q.E.D.

Because of the relationship of PR to one of the

centermarker-languages of Haines, the actual language-type

of PR has already been determined by him.

*" Theorem 5.06: The set of all production-rule words, PR,

where each word amb meets the requirements of

Definition 4.01 of Section IV, is a type-2

language.

Proof: The PR set is identical to one of the

centermarker-languages studied by Haines (98):

CM=[xcylx, yCR, R is a regular set over Z,

x~y, cV Z). Haines proved that the CM lan-

guages are at least type 2. The details of

his proof will not be repeated here. By

applying Theorem 5.05, PR is found to be

exactly a type-2 language. Q.E.D.

So, PR has been proven to be a type-2, context-free,
language. By considering the facts as a language them-

selves, the production-rule language has been shown to be

dependent on the knowledge-language (see Definition 4.03 of

Section IV) as well as the rule's structure. More is

discussed about the characteristics of PR later. But first,

consider the case where the facts are defined to be symbols

in an alphabet.

Case II: Facts are Symbols. In order to "hide" the

language characteristics of facts in the production-rule
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strings, the facts will need to be treated as arbitrary

entities. To achieve this, each fact is considered to be a

single alphabet symbol of unit length. Because only the

*1 individual characteristics of the facts are to be hidden,
*,*

this alphabet of facts remains countably infinite in size.

Otherwise, the set does not contain all the possible facts

in Z . The definition of the production-rule word has to be

modified as follows to incorporate these arbitrary facts:

Definition 5.01: For an arbitrary, countably infinite set of

-. facts F, a production rule that has only

category-i characteristics (see Tables II

and III) is defined as a 3-tuple. The

,w 3-tuple is of the form "amb" where "a" and

"b" represent individual facts, "m" is a

special symbol disjoint from F which

represents the implies operator, a,b F,

IaI=IbJ=l and a#b. The form amb reads "a

implies b".

With this definition in hand, let "PA" represent the set

consisting of all the 3-tuples meeting Definition 5.01. For

this set, the first step is to determine if each 3-tuple is

a formal word.

Theorem 5.07: Each production rule of the form amb meeting

.5 Definition 5.01 is not a finite word.

Proof: This follows directly from the definition of a

i word. While the length of amb is three and

'- hence finite, the overall alphabet, FUm,
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that the strings are constructed from is

countably infinite. From Definitions 3.01 and

3.02 of Section III, words are constructed

from only finite alphabets. Therefore, the

amb strings are not finite words. Q.E.D.

This theorem makes a very strong statement at the very

beginning of the investigation of PA. The amb strings were

purposely made finite in length to make these strings meet

the finite length requirement of formal words (see Defini-

tion 3.02 of Section III). Yet, the countably infinite

alphabet prevents the strings from being formal words. The

size of this alphabet also leads to the following theorem

regarding the PA set.

Theorem 5.08: The set of production rules PA consisting of

all possible strings amb meeting the

Definition 5.01 is not a formal language.

Proof: Because languages require finite words as

members, PA can be proven not to be a formal

language immediately by applying Theorem 5.07.

However, to emphasize the critical nature of

the size of the alphabet, an alternate proof

is given.

Recall from Definition 3.07 of Section III

that a language is the set of all words that

can be generated by a grammar. From the

definition of a grammar (Definition 1.02 of

Section I), a grammar has to have a finite set
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T of terminal symbols. The overall alphabet,

Fu(m), is this terminal set T for the PA

grammar. But, this alphabet is countably

infinite. Therefore, a grammar does not exist

that generates all the finite strings (words)

.j in the PA set; thus PA cannot be a type-0

formal language. Q.E.D.

Besides establishing that PA is not a language, Theorem

5.08 emphasizes that for strings of symbols, finite length

is a necessary but not sufficient condition to make the

strings formal words. This is but one of the characteris-

tics that have to be taken into account when attempting to

map the knowledge representations into formal language

structures. There are other characteristics that impact the

PR and PA sets as well.

Production-Rule Characteristics

Even though PA is not a formal language (Theorem 5.08),

the characteristics of this set reveal several important

facts that affect the class of languages that contains the

PR language (see Theorem 5.06). Therefore, the characteris-

tics of PA are covered first. Then, the characteristics of

the production-rule set PR are developed.

PA Characteristics. To investigate the PA set further,

the number of strings contained in PA is determined.
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Theorem 5.09: The set PA consisting of all possible 3-tuples

over F of the form amb meeting Definition 5.01

is countably infinite.

Proof: Because the alphabet F is countably infinite,

the proof of Theorem 5.02 can be applied

directly to this theorem. That is, let the

C0,Cl,... be members of F instead of Z+ . Therefore, it

follows that PA is countably infinite. Also, the subset of

words where a=b is countably infinite for the PA case as

well. Q.E.D.

It is important not to try to prove that PA is countably

infinite by applying Theorem 3.17 of Section III. Theorem

3.17 requires, but does not so state, that the strings be

formal words. From Theorem 5.07, PA does not contain these

required formal words. But, PA can be forced to contain

formal words by restricting the set F to be finite.

Theorem 5.10: For an arbitrary, nonempty, finite subset of

F, FS, all of the production rules of the form

amb that meet Definition 5.01 over FS instead

of F are finite words.

Proof: Because FS is nonempty and finite, the overall

Halphabet for the production rules, FS U[mj, is

also nonempty and finite. Therefore, these

production-rule strings meet the first of the

two constraints for formal words (see Defini-

tion 3.01 of Section III).
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The second constraint, finite length (see

Definition 3.02 of Section III), is met by the

constraint that IaI=IbI=ImI=l. Hence, each

amb string is of length three, a finite

number. Therefore, each amb string is a

finite word over FS U~m). Q.E.D.

Since production-rule words exist for this special case,

the search for a language-type can begin. But this search

is very short in comparison to the previous search for the

PR language.

Theorem 5.11: The set of production rules PF consisting of

all possible strings meeting Definition 5.01,

except that the facts are selected from an

arbitrary, finite subset FS of F, is a finite

set and hence a type-3 language.

Proof: Let the size of FS be a nonzero, finite

number, M. Following the same technique of

matrix construction used in Theorem 5.02,

construct the matrix equivalent of PF as shown

in Figure 14. The symbols C0,C, ... CM

represent the a and b fact-symbols in FS. The

symbol XX represents the a=b cases. The

symbol m is the implies relationship.

From Figure 14, the size of the matrix is

2
M2 . Because there is only one XX entry per

row, the overall size of PF is M(M-1). Since

M is finite, M(M-1) is also finite.

97



CO C1 C2 ... CM

Com XX COmCI COmC2 ... C~mCM

Clm ClmCO XX ClmC2 ... ClmCM

C2m C2mCO C2mCl XX ... C2mCM

... ... ... ... ... ...

CMm CMmCO CMmCI CMmC2 ... XX

Figure 14. PF Word Matrix

Therefore, PF consists of a finite number of

words.

Using PF's finite size, the fact that the

amb strings are words and applying Definitions

3.19, 3.21 and Theorem 3.12 of Section III, PF

is found to be a type-3 language. Q.E.D.

Theorem 5.11 only dealt with a single arbitrary case of

converting a subset of strings in PA into some formal

language. The next theorem expands this into a class of

languages.

Theorem 5.12: There exists a countably infinite number of

finite production-rule languages where the

nonempty fact-sets are selected from an

arbitrary, countably infinite set of symbols.

Proof: Theorem 5.11 was based on selecting a finite

subset of facts from F. Applying Theorem 3.10

i of Section III, there is a countably infinite
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*, ' number of finite subsets in F. Because the

empty set c is always a finite subset of any

set, the nonempty constraint requires that it

be removed from this group of subsets. After

removing the empty set and applying the

f(x)=x-l mapping on the indexes of the remain-

ing subsets, there is still a countably

infinite number of nonempty finite subsets

available for use in generating finite

production-rule languages. Hence, there

exists a countably infinite number of finite

production-rule languages. Q.E.D.

Because finite languages have been studied extensively

by Maurer et al. (99; 100), further investigation of the

characteristics of these finite production-rule languages is

not accomplished. However, it is important to notice that

when the facts are arbitrary, countably infinite, symbols,

no single production-rule language exists that can contain

* all possible rules. See Section IX for discussions on

additional affects that the knowledge-languages (see

Definition 4.03 of Section IV) have on production rules.

Category 1 Class. Since the PR version of production

rules does contain all possible production-rule words for a

given Z, the characteristics of the PR language merit

further investigation. Due to the fact that the general

characteristics of context-free languages have been studied

extensively, the "common" characteristics of type-2 lan-
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I.

guages (e.g. normal grammar forms, word membership algo-

rithm, parsing algorithm) of PR alone are not investigated

further. The reader is referred to references 6, 92, 93, 94,

95, 96 and the references in Appendix A for information on

how tc determine these characteristics.

However, there are characteristics of the class of

languages which contains the PR language that directly

impact later findings. Therefore, the characteristics of

this class are covered in depth.

Theorem 5.13: Any set of production-rule words consisting of

all the words meeting Definition 4.01 of

Section IV, except that the set of facts for

each rule-set is any nonempty regular set over

Z, is at least a type-2 language.

. Proof: This proof follows directly from

Haines (98) and Theorems 5.06 and 5.12.

Haines proved that for the centermarker-

languages, the x and y strings of the

centermarker-word xcy can be selected from any

regular set and the resulting language is type

2. Here, the equivalent x and y are selected

from any nonempty regular set over the

fact-alphabet Z. Therefore, each of the

e.4. production-rule languages in this theorem is

.upper bounded at a type-2 language.

Now, to show the "at least" criterion, the

results of Theorems 5.06 and 5.12 are needed.
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Theorem 5.06 established that the

production-rule set PR is exactly a type-2

language. Since PR uses a nonempty regular

set Z for the fact-set, PR meets the require-

ments of this theorem. Hence, a type-2

language exists that meets the constraints of

this theorem.

Next, Theorem 5.12 established the

existence of a countably infinite set of

type-3 production-rule languages where the

facts are selected from nonempty, finite,

regular sets. If Z+ is used as the arbitrary,

countably infinite set for Theorem 5.12, then

these finite language are also contained in

the set of languages covered by this theorem.

Therefore, since both type-2 and type-3

production-rule languages are contained in the

set of languages covered by this theorem, it

follows from Chomsky's language-hierarchy (8)

and the type-2 upper bound that these

languages are at least type 2. Q.E.D.

As was shown in Theorem 5.13, the production-rule

language PR is only one of a number of possible production-

* rule languages each of which has only category-i character-

istics (see Tables II and III of Section IV). The size of

this class of languages provides another important

characteristic.
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Theorem 5.14: The production-rule language PR consisting of

all words meeting Definition 4.01 of Section

IV is a member of a countably infinite class

of type-2 production-rule languages.

Proof: This proof follows from Theorem 3.18 of

Section III and Theorems 5.02, 5.06, 5.12 and

5.13. Theorem 5.13 established that type-2

production-rule languages can be constructed

provided the facts are selected from a non-

empty regular set. Theorems 5.02 and 5.06

revealed the existence of at least one lan-

guage containing a countably infinite number

of words, PR, that meets the constraints of

Theorem 5.13. By using Z + as the arbitrary

countably infinite set, Theorem 5.12 shows the

existence of a countably infinite set of

finite production-rule languages that also

meet the regular set constraint of Theorem

5.13. Since PR contains a countably infinite

number of words, PR is not a member of this

countably infinite set of finite languages.

Hence, from set theory, the union of a finite

set (the single PR language) and a countably

* infinite set (the finite languages) is count-

ably infinite. So, PR is a member of a set of

. languages that is at least countably infinite

• in size.
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S,-. To prove the upper bound on this class,

the size of language space is needed. Theorem

3.18 of Section III established that the size

of language space for a given alphabet is

countably infinite. Therefore, the upper

bound for this class of production-rule

languages is also countably infinite. Since

both the upper and lower bounds agree, this

class of production-rule languages is

countably infinite in size. Q.E.D.

So, at the category-i level of the definition-hierarchy

(see Figure 12 in Section IV) there exist countably infinite

numbers of production-rule languages (both finite and

l " £countably infinite in size) of which.PR is a member. The

fact that this class consists of all possible production-

rule languages over regular fact-sets yields another

characteristic of this class of languages.

Theorem 5.15: The class of category-i languages consisting

of production-rule languages where each

language consists of all the words meeting

Definition 4.01 of Section IV, except that the

set of facts for each language is any nonempty

regular set over Z, is not closed under the

union operation.

-C Proof: This proof follows from construction of a

counter-example. For this proof, arbitrarily

select the Z alphabet as follows: Z=[c, d, g,

103

.N C. '.,,.. I.. -3.C--.,,~'
% ~ * ;* , **~, * C-~~. ' ~ -



0h, k}. For this alphabet, arbitrarily select

two finite, regular sets as follows: Sl=[c, d)

and S2=[g, h). Now, construct the two

production-rule languages for these sets:

Ll=(cmd, dmc) and L2=tgmh, hmg}. Finally, using

these two languages, form a third language by

the union operation: L3=[cmd, dmc, gmh, hmg).

By this construction, Li and L2 meet the

constraints needed to be members of the

specified class of category-i languages. That

is, each of these two languages consists of

all the words meeting Definition 4.01 of

Section IV except that the facts are selected

from some nonempty regular set over Z. How-

ever, the language formed from their union,

L3, does not meet these constraints.

The language L3 consists of production-

rule words formed from a regular set of four

individual facts: S3=[c, d, g, h). But, L3 does

not contain all possible production-rule words

over S3. For example, the legal word "cmg" is

not contained in 3. Yet, by the definition

of the production-rule languages contained in

this class, this specific word (and others)

must be contained in the production-rule

language over the S3 set of facts. Therefore,
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L3 is a finite language but is not a

product ion-rule language.
Since the union closure property requires

that the third language L3 also be in the

class, it follows that this class of category-

*1 production-rule languages is not closed

under the union operation. Q.E.D.

This union closure property is not the only regular

operation that this -lass of production-rule languages does

not meet. This class also does not meet the product closure

property. The product of two languages is the concatenation

of a word from the first language to that of a word from the

second language in order to form the words contained in a

third language. To be closed under this operation, the

language formed by the product operation must also be in the

same class as the two original languages.

Theorem 5.16: The class of category-l languages consisting

of production-rule languages where each

language consists of all of the words meeting

Definition 4.01 of Section IV, except that the

p. set of facts for each language is any nonempty

regular set over Z, is not closed under the

product operation.

Proof: This proof follows from the construction of a

counter-example. For any two production-rule

languages in this class of category-I lan-

guages, the product operation generates
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strings of the form "AlmBlA2mB2." Because a

production-rule word has only one implies

symbol m, the product operation generates

illegal rule-words. Hence, the strings

generated by the product operation cannot be

contained in any production-rule language.

So, this class of category-i production-rule-p

languages is not closed under the product

operation. Q.E.D.

These closure properties of this class of production-

rule languages lead to another characteristic of this

language class. This characteristic is that this class of

production-rule languages does not form an Abstract Family

of Languages (AFL) (24).

Theorem 5.17: The class of category-i languages consisting

of production-rule languages where each

language consists of all words meeting Defini-

tion 4.01 of Section IV, except that the set

of facts for each language is any nonempty

regular set over Z, is not an AFL.

Proof: From reference 24, an AFL contains languages

that are closed under six operations: union,

product, Kleene closure, e-free homomorphism,

inverse homomorphism and intersection with a

.d regular set. From Theorems 5.15 and 5.16,

this class of production-rule languages is not
closed under either union or product.
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Therefore, this class of category-i

production-rule languages cannot be an AFL.

Q.E.D.

'S The result of Theorem 5.17 presents a major stumbling

block to the further study of this class of production-rule

languages. Because this class is not an AFL, the determina-

tion of additional characteristics of the class has to

involie the analysis of the entire set of languages in the

class. Thus, the multitude of characteristics already

proven about AFLs by formal language theorists cannot be

used to help expand the characteristic-set of this class of

languages.

The characteristics of AFLs are not the only character-

istics that do not apply to this class of languages. The

characteristics of the general class of type-2 languages

also do not apply. For example, the entire set of Chomsky's

type-2 languages form an AFL but this class of category-i

production-rule languages does not. Another example is that

the entire set of Chomsky's type-2 languages is closed under

the regular operations of union and product (6:12), yet this

class of languages is not.

So, while this class of category-i production-rule

languages is u set of type-2 languages, characteristics of

the general type-2 languages cannot be used, without proof,

when referring to this class of production-rule languages.

Even though other characteristics of this class of

production-rule languages as well as characteristics of
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other classes of category-i production-rule languages could

be investigated, sufficient characteristics of production-

rule languages have been identified for use in later inves-

tigations. The time has come to develop the

semantic-network language equivalent.
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VI. Semantic-Network Language and Characteristics

Since the 3-tuple form of a production-rule representa-

tion has been successfully evaluated via formal language

theory, the investigation can now turn to the evaluation of

the 3-tuple form of a semantic-network representation.

Because both representations use a 3-tuple form, some

theorems about semantic networks can be proven by arbitra-

rily mapping the symbol m to a single relation-word in the

relation-set. To make extensive use of this mapping, the

semantic-network development parallels that of the

production-rule effort.

Semant ic-Network Language

Following the production-rule methodology, there are two

approaches that are used to determine a semantic-network

language equivalent: node labels and relations are words;

node labels and relations are symbols. However, for a

semantic network there are two additional approaches that

have to be considered: node labels are words and relations

are symbols and vice versa. Because these last two

approaches depend on the results of the "node label and

relations are symbols" approach, they are addressed under

that approach.

Case I: Word Approach. As was the case for the

production-rule effort, the semantic-network development

begins with analysis at the individual word level.
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Theorem 6.01: Each set of semantic-network strings con-

structed under the constraints of Definition

4.02 of Section IV contains finite words of

the form arb.

Proof: From Definitions 3.01 and 3.02 of Section III,

a word over any nonempty, finite alphabet is

finite in length. From Definition 4.02, the

alphabets for the node-label set, Z, and the

relation-set, Y, are each nonempty and finite.

From set theory, the union of two finite sets

remain finite. Therefore, the alphabet over

which each arb string is constructed, ZU Y, is

nonempty and finite.

Each of the a, r and b components of the

overall string is finite in length (see

Definitions 3.03 and 3.04 of Section III).

Since the sum of finite numbers remains

finite, the length of arb is a finite number.

Therefore, each 3-tuple, arb, over ZuY is a

finite word. Q.E.D.

Now that the individual 3-tuples are known to be finite

words, the set "SN" can be constructed which contains all

the possible words over ZUY that meet Definition 4.02 of

Section IV. The size of this set can be determined by

expanding the proof given for the size of the PR production-

rule language (see Theorem 5.02 of Section V).
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Theorem 6.02: The set SN contains a countably infinite

number of words.

Proof: The proof of this theorem follows directly

from Theorem 5.02 of Section V and Theorem

3.05 of Section III. For Theorem 5.02, Figure

12 was constructed for the case of words of

the form amb where m was a single symbol and

a,bC . In that case, there were found to be

a countably infinite subset of cases for a=b

as well as countably infinite rows. Each row

was also found to contain countably infinite

entries. So, the entire set PR was found to

be countably infinite by application of the

Theorem 3.05: the union of a countable set of

countable sets remains countable.

Using this production-rule case, discard

the "implies" meaning attached to m and rename

the symbol m to be a single relation-word

"Rl," where RlC . Then, let the fact-

alphabet Z be equated to the node-label

alphabet. Under this mapping, the proof of

Theorem 5.02 shows that there is a countably

infinite number of words of the form "aRlb" in

SN and a countably infinite number of a=b

cases for a given RI.

y+y
Now let RI range over Y. Since Y is

countably infinite (see Theorem 5.02 for the

ii1
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.- ; proof of the size of Z +), there is a countably

infinite number of subsets of words "aR(i)b"

in SN, each containing countably infinite

words. By applying Theorem 3.05, SN is found

to contain a countably infinite number of

words. Additionally, it follows that the

union of all the countably infinite subsets

where a=b is countably infinite. Q.E.D.

Because the set SN contains a countably infinite number

of finite words, additional effort will be required to

determine if it is a formal language. That is, since SN is

not finite (a type-3 language), additional analysis is

required to determine the language-type (if any) of SN. The

semantic-network development follows the production-rule

approach of using Chomsky's finite language-hierarchy to

classify the languages (8). Additionally, the semantic-

network language is developed by first removing all the

constraints of Definition 4.02 of Section IV on the node

J labels and relations. Then, each constraint is applied,

one at a time, so that the affects of these constraints

can be identified.

Theorem 6.03: The semantic network that contains all of

the words of the form arb, where Z and Y are

nonempty, disjoint, finite alphabets and
:: a~b C* *

abCZ, rC Y , is a type-3 language.

Proof: The set of semantic-network words for this

case can be represented as the concatenation
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V

S

of three sets: Z Y Z • Because Y and Z are

finite, they are regular sets by Definition

3.19 of Section III. Applying Definition 3.19

once more, Z and Y are found to be regular

sets as well. Then, applying '-he concatenation

rule of Definition 3.19, Z Y Z is found to be

a regular set. Applying Definition 3.21 and

Theorem 3.12 of Section III, this regular set

is proven to be a type-3 language. Q.F.D.

Now that the unrestricted case has been found to be a

type-3 language, let the constraint be applied that the

empty word, e, cannot be contained in either the node-label

or relation set and evaluate again.

U Theorem 6.04: The semantic network containing all of the

words of the form arb, where Z and Y are

nonempty, disjoint, finite alphabets and

a,bC Z , rCY+, is a type-3 language.

Proof: In this case, the set of semantic-network

words can be represented as the concatenation

of three sets: . Because Z and Y are

finite alphabets, Z and Y are regular sets

(94:30-31). Applying the concatenation rule

of Definition 3.19 of Section III, Z+Y+Z+ is a

regular set. Applying Definition 3.21 and

Theorem 3.12 of Section III, this regular set

is proven to be a type-3 language. Q.E.D.
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S . The proof technique of Theorem 6.04 also applies to the

cases where the empty word is allowed in one set (node

labels or relations) but not the other. This conclusion
* •

follows from the fact that Z , Z Y and Y are all regular

sets. The concatenation process on any mix of these sets

still yields a regular set. Because the case proven in

Theorem 6.04 already applies directly to the constraints of

the semantic-network definition, these other mixed cases are

not established as formal theorems.

Even though this empty word constraint does not cause

the language-type to change, the a#b constraint on the node

labels affects the type-3 language finding. The following

. theorem relies heavily on the results found for the

production-rule language.

Theorem 6.05: The semantic network, SN, consisting of all

S the words arb which meet Definition 4.02 of

Section IV is not a type-3 language.

Proof: The proof will be by construction. First,

assume that SN is a type-3 language. Then,

from Definition 3.21 and Theorem 3.12 of

Section III, all of the words in SN must be
4,

accepted by a finite automaton. Because the

centermarker relation-set is a countably

infinite regular set, this finite automaton

must contain a finite number of states with

-- looping paths to accept these relation-words.

Since these relation-words are over a disjoint
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" alphabet, the states and interconnecting

° paths, including the initial and final states

used to accept the relation-words, can be

identified within the automaton. This set of

states and paths can then be investigated

~separately from the set accepting the node-

S

' label words. Using construction techniques,

-' nondeterministic finite automaton is developed

mw that will accept the relation-words (see

FiFigure 15).

ahFirst, select a single relation RI from

Sthe relation-words Y Next construct a set

nX such that X=Y [R . Because teand [Ra t are

regular sets over Y, the difference closure

property of regular sets yields that X is also

a regular set (92:186).

',w115
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Now, let X-Acceptor and Rl-Acceptor be the

names of the finite automata that accept X and

JR1}, respectively. Next, apply the union

closure property of regular sets (92:'86) and

the equivalence in machine "power" of a

nondeterministic firite automaton and a

deterministic finite automaton (93:62) and

construct an equivalent nondeterministic

finite automaton accepting the relation-words

Y+. From Figure 15, this construction is

accomplished by connecting the Ri-Acceptor and

X-Acceptor in a parallel fashion via a common

• , initial state (the "choice" state of nondeter-

ministic machines). Therefore, as words from
" y+

Y are entered, the equivalent automaton

effectively executes both the Ri-Acceptor and

X-Acceptor in parallel during the acceptance

process. The overall automaton halts in the

final "accept" state when either the RI-

Acceptor or X-Acceptor accepts the input

relation-word.

Next, since SN is assumed to be a type-3

language and accepted by some finite automa-

ton, use this equivalent nondeterministic

finite automaton as the mechanism that accepts

the Y + words during SN acceptance (see Figure

16). That is, replace the states and inter-
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i Figure 16. SN Acceptor

connecting paths previously used to accept Y

in the SN acceptor with this equivalent

nondeterministic finite automaton. Because

the SN machine does not necessarily halt upon

accepting the relation-word, change the accept

state to an "exit" state from the Ri-Acceptor
.- *~- and the X-Acceptor. Since neither changing
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the number finite states nor adding nondeter-

minism to a finite automaton changes the

overall power of the machine (93), this

* exchange of Y+ acceptors does not change the

power of the original SN acceptor automaton.

In this exchange of Y+ acceptors, the

initial/final states of the Y+ acceptor are

the final/initial states for the Si and S2

sets of states, respectively. This has to

occur because the incoming and outgoing paths

to/from the Y+ acceptor were not modified.
y+

After this new Y acceptor is in place in

the SN acceptor, words from SN are now con-

strained to follow one of the two paths when

being accepted. That is, in operation, the

overall SN acceptor can really be considered

as passing through two independent sequences

of states depending on the relation-word in

the overall semantic-network word. For

example, words of the form aRlb contained in

SN can only be accepted by traversing the

states of the Ri-Acceptor. Recognizing this

true separation of paths, the proof can now be

finalized.
wl

Because of this guaranteed separation of

paths, this overall SN acceptor (Figure 16)

.. can be replaced by an equivalent acceptor.
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.i[ This equivalent acceptor contains an indepen-

!. - dent path for words of the form aRlb and an

~independent path for the words of the form

"IaW(i)b°' where W(i) X (see Figure 17). This

acceptor is constructed as follows: The

choice state is moved from the relation-word

subautomaton and placed as the initial state
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.\ .: in the overall machine. The original machine

states (finite in number) are then duplicated

in each of the choice paths, except that the

RI-Acceptor is used in one path and the

X-Acceptor is used in the other. Because the

initial choice state was moved, the initial

states in the Rl-Acceptor and X-Acceptor

become the new final states for the Sl set of

states. This does not affect the operation of

the acceptors nor the set of Si states since

the choice state effectively passed the same

set of incoming paths to the initial states

inside the two acceptors anyway. Also, the

exit state is duplicated for both acceptors.

The exit state remains both the final state

for the acceptors and the initial state for

the S2 states as before.

Therefore, this equivalent SN acceptor is

a nondeterministic finite automaton. The

automaton accepts words of the form aRlb by

following one set of independent states and

accepts words of the form aW(i)b by following

another set of independent states. Even

though there are duplicate states in each of

the two paths, these states are not inter-

connected in any manner. Because of the

placement of the choice state in the SN

120



acceptor, the two paths are effectively each a

finite automaton accepting just words of the

form aRlb and aW(i)b, respectively. In other

words, since SN is assumed to be a regular

set, the difference and union closure proper-

ties of regular sets can be used to form two

other regular sets, [aRlb] and (aW(i)bl, whose

union yields SN. Hence, the two separate

automata accepting words of the form aRlb and

-aW(i)b, respectively, can be connected in

parallel to accept the overall SN set.

Now, let m=Rl and let the arbitrary

fact-alphabet and the arbitrary node-label

alphabet be identical. If m is allowed

semantically to be the implies relation of PR,

this mapping results in this [aRlb) set becoming

the PR language. So, this SN acceptor accepts

the PR language as a special subset. But,

this subset is actually accepted by a finite

set of independent states in SN: a finite

subautomaton. This PR set was previously

proven not to be a type-3 (regular set)

language. Hence, PR cannot be accepted by any

finite automaton (see Theorem 5.05 of Section

V). This is a contradiction of the regular

-set closure properties used to construct the

* - (aRlb) regular set. Therefore, this finite
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automaton (Figure 17) cannot accept all of the
B- °

words in SN as previously assumed.

While this contradiction was found by

constructing only one finite automaton, the

contradiction condition also applies to any

finite automaton that could be constructed to

accept SN. The subautomaton that was con-

structed to accept Y+ (see Figure 15) was

based on the known closure relationships of

the regular sets and the known equivalence of

nondeterministic/deterministic finite

automata. Hence, it follows that any other

finite subautomnaton constructed to accept the

relation-words Y+ has to be equivalent to the

one constructed for this proof. That is, no

matter how the Y+ regular set is partitioned
%

into regular subsets (subsets must remain

regular to be accepted by a finite automaton),

there always exists one subset where the

difference closure property can be applied to

construct the single symbol, (R1}, regular set.

Then, using the union closure property and

nondeterminism, the equivalent separate path

for [RI) acceptance can be shown to exist and

the contradiction condition can be identified.

In addition to this equivalence of all

* possible Y+ acceptors, the accepting mechanism
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for the node-label words Z+ and the a~b

constraint have been adequately handled by the

abstract nature of the construction. That is,

the node-label words Z + were not manipulated

in any way by this construction. The accept-

ing mechanism for them was handled abstractly

in that two abstract sets of finite states, Si

and S2, were assumed to perform the recog-

nit ion of the node-label words as well as the

a#b criterion. Therefore, all possible

finite automaton acceptors have been con-

sidered and the recognition of the node-label

words as well as the a~b criterion.

Therefore, all possible finite automaton

acceptors have been considered and so SN has

been proven not to be a type-3 language.

Q.E.D.

The proof that SN is not a type-3 language relied on

SN's relationship to Haines' centermarker-languages (98).

By applying this relationship again, the actual language-

type of SN can be determined.

Theorem 6.06: The semantic network consisting of all the

words that meet Definition 4.02 of Section IV

is a type-2 language.

Proof: The proof of this theorem is by construction.

The construction relies heavily on Haines'

centermarker-languages and the type of machine
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that accepts them (98). First, since SN is

over Z, let M be the nondeterministic, single

pushdown-store, machine that accepts the

centermarker-language CM=txcylx,yC Z , x~y,

cq.ZI. From the work of Haines, this machine

must exist.

Next, make use of the fact that c is a

disjoint, regular set and identify the finite

set of states and interconnecting paths in M

that are used to accept c. Since this center-

marker is only a single symbol, it may be the

case that a single path between two apparently

unrelated states is used for this acceptance.

For example, Haines used the c symbol to

change between the x and y acceptance schemes.

The symbol was effectively accepted by trav-

ersing a path between the states used in the

acceptance of other unrelated words.

However, these apparently unrelated states

are actually the initial and final states of

the subautomaton that accepts c. The key

point is that the initial and final states of

the automaton accepting c may actually perform

dual roles inside M. It is important to

include these dual-function states in the

subautomaton accepting c.
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Putting aside for the moment this mecha-

nism that accepts c, the characteristics of

the relation-set that are identical to the

characteristics of the c centermarker are

determined. The relation-set is a countably

infinite, disjoint, regular set that does not

contain the empty word (see Theorem 6.02).

From Definition 3.21 of Section III, this

relation-set must be accepted by some finite

automaton. Hence, both the relation-set and

the c centermarker are accepted by finite

automata.

Another characteristic that the relation-

set and the c centermarker share is that

neither one contains the empty word. Hence, a

relation-word must always exist in the words

of SN just as c must always exist in the words

of CM.

The third and final identical characteris-

tic between the relation-set and c center-

marker is that the relation-set is constructed

from an alphabet that is disjoint from the

node-label alphabet. Therefore, the relation-

words are always easily identified from the

node-label words. That is, the accepting

states and paths of the relation-set are

independent of the accepting states and paths
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for the node-label words. The c centermarker

also has this characteristic.

Based on these common characteristics and

the proof of Theorem 6.05, it follows that by

replacing the finite set of states and inter-

connecting paths accepting c with the finite

set of states and paths accepting the

relation-set, M then accepts words that

contain relation-words as the centermarkers.

Therefore, let M' be the machine M modified by

replacing the previously identified states and

paths used to accept c with a finite automaton

*.. that accepts Y

It is important to notice that this

replacement action did not modify either the

incoming paths to the initial state nor the

outgoing paths from the final states of the c

acceptor. This means that the previously
w*,

mentioned dual functions that some initial/

final states of the c acceptor may perform

remain unchanged. Additionally, the replace-

ment action did not change any other of the

states and interconnecting paths involving the

Z+ words. It follows then that the x~y

constraint on the original set of words

i 7?. remains unchanged. Hence, M' actually accepts

the words of SN.
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Finally, as long as the number of states

remains finite, the power of any type of

machine is not affected by changing the number

of states (93). Therefore, M' still remains

in the class of nondeterministic, single

pushdown-store, machines. From reference 8,

page 43, it follows that SN is at least a

type-2 language. Applying Theorem 6.05, SN is

found to be exactly a type-2 language. Q.E.D.

So, SN has been proven to be a type-2 language. By

considering both the node-label and relation sets as lan-

guages themselves, this semantic-network language has been

* shown to be dependent on both the network's structure and

the knowledge-language (see Definition 4.04 of Section IV)

it contains. More is discussed about the characteristics of

SN later. But first, consider the case where the node

labels and the relations are defined to be symbols in an

alphabet.

Case II: Symbol Approach. In order to "hide" the

language characteristics of the node labels and relations in

the semantic-network strings, the node labels and relations

are treated as arbitrary entities. To achieve this, each

node label and relation is considered to be a single

alphabet-symbol of unit length. However, the disjoint

nature of the node-label and relation sets is still main-

.. tained. Also, because only the individual characteristics

of the node-label and relation words are hidden, each
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alphabet of node labels and relations remains countably

infinite is size. Otherwise, the overall semantic-network

set does not contain all the possible node-label words in Z

+
and all the possible relation-words in Y. Using these

I,

changes, the definition of a semantic-network is modified as

follows:4-

Definition 6.01: For any two arbitrary, disjoint, countably

infinite sets, LB and R, a semantic network

that has only category-i characteristics

(see Tables IV, V and VI of Section IV) is

defined as a collection of 3-tuples. Each

3-tuple is of the form "arb" where "a" and

"b" represent individual node labels, "r"

represents the relation between the nodes,

a,bCLB, rC R, laJ=Jb[=IrI=l and aeb. The

-. form arb reads "a is related to b by r."

That is, the link arrow goes from a to b.

With this definition in hand, the first step is to

determine if arb is a formal word.

Theorem 6.07: Every semantic network constructed under the

constraints of Definition 6.01 consists ,f

only strings of the form arb that are not

finite words.

Proof: This follows directly from the definition of a

word. While the length of each string is

three and hence finite, it follows from

Theorem 3.05 of Section III that the

128

%.



overall alphabet, LBU R, is countably infi-

nite. From Definitions 3.01 and 3.02 of

Section III, words are constructed from only

finite alphabets. Therefore, the strings are

not finite words. Q.E.D.

Similar to the production-rule development, the arbi-

trary node-label and relation conditions applied to the

semanti network force the strings not to be formal words.

Since a language has to have words, this countably infinite

alphabet leads to the following language theorem.

Theorem 6.08: The semantic network, SA, consisting of all

possible strings meeting the Definition 6.01,

is not a formal language.

Proof: Because languages require finite words as

members, SA can be proven not to be a formal

language immediately by applying Theorem 6.07.

However, to emphasize the critical nature of

the size of the alphabet, an alternate proof

is given.

Recall from Definition 3.07 of Section III

that a language is the set of all words that

can be generated from a grammar. From the

definition of a grammar (Definition 1.02 of

Section I), a grammar has to have a finite set

T of terminal symbols. The overall alphabet,

LBU R, is this terminal-set T for the SA

grammar. But, this alphabet is countably
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infinite. Therefore, a grammar does not exist

that generates all the finite strings (words)

that are members of SA; thus SA cannot be a

type-0 formal language. Q.E.D.

As was the case for production rules, this theorem also

emphasizes that the finite length constraint on the symbol

strings is only a necessary but not sufficient condition to

make the strings formal words. This necessary condition is

emphasized not only for the case where both of the sets LB

and R are finite, but is also emphasized for the case where

either the node labels or relations, but not both, are

considered to be words in a language.

Theorem 6.09: Let either the node-label set or the relation-

set consist of all the words (except e) over a

nonempty, finite alphabet V and let the

remaining set be comprised of a countably

infinite set of symbols LB or R as needed.

Then, the semantic network, SK, formed from

all the possible strings meeting Definition

6.01, except a,bCV + (or LB) and rC R (or V+),

does not contain finite words.

Proof: This follows directly from the definition of a

word. While the length of a string is three

and hence finite, the overall alphabet, either

LBU V or V _,R, that the strings are con-

structed from is countably infinite. From

Definitions 3.01 and 3.02 of Section III,
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. words are constructed from only finite

"" alphabets. Therefore, the strings are not

finite words. Q.E.D.

Hence, the SK semantic network cannot contain finite

words. This lack of formal words leads to the next theorem

regarding the language-type of SK.

Theorem 6.10: Let either the node-label set or the relation-

set consist of all the words (except e) over a

nonempty, finite alphabet V and let the

a.!  remaining set be comprised of a countably

infinite set of symbols LB or R as needed.

Then, the semantic network, SK, formed from

all the possible strings meeting Definition

6.01, except a,bCV+ (or LB) and rC R (or V 
+ ),

is not a formal language.

a -Proof: Recall from Definition 3.07 of Section III

that a language is the set of all words that

can be generated from a grammar. From the

definition of a grammar (Definition 1.02 of

Section I), a grammar has to have a finite set

T of terminal symbols. The overall alphabet,

LBjV or VUR, is this terminal-set for the SK

grammar. But, this alphabet is countably

infinite. Therefore, a grammar does not exist

that generates all the finite strings (words)

_ that are members of SK; thus SK cannot be a

- type-0 formal language. Q.E.D.
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Theorems 6.08 and 6.10 reveal that when at least one of

the disjoint sets of node labels and relations is con-

structed from an arbitrary, countably infinite alphabet, the

semantic network cannot be a formal language. This is but

one of the characteristics that have to be taken into

account when attempting to map knowledge representations

into formal languages. There are other characteristics that

affect the SN, SA and SK semantic networks as weal.

.,, .Semantic-Network Characteristics

Because of the abstract nature of the SA semantic-

network definition (see Definition 6.01 and Theorem 6.08),

the characteristics of SA are covered first. Since the SK

. semantic network (see Theorem 6.09) is only a variation on

the SA network, it is not considered any further in this

evaluation. Should the characteristics of SK be needed,

they can be found by modifying the SA findings with the

either/or case approach as was done in Theorems 6.09 and

6.10. However, the characteristics of the SN semantic-

network language (see Theorem 6.06) are presented herein.

SA Characteristics. To investigate the SA semantic

network further, the size of SA is determined.

Theorem 6.11: The SA semantic network, consisting of all

possible 3-tuples of the form arb meeting

Definition 6.01, is countably infinite.

Proof: Because the alphabets LB and R are each

.. countably infinite, the proof of Theorem 6.02
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can be applied directly to this theorem. That

is, let the CO,Cl,... of Figure 13 be members

of LB instead of Z+ . Then, let Rl range over

R instead of Y+. Therefore, it follows that

SA is courtably infinite. Also the subset of

words where a=b is countably infinite for the

SA case as well. Q.E.D.

For reasons similar to those given for the PA

production-rule set, Theorem 3.17 of Section III cannot be

used to prove Theorem 6.11. However, the strings contained

in SA can be forced to be words by restricting both LB and R

to be finite sets.

Theorem 6.12: For an arbitrary, nonempty, finite subset of

LB, LBF, and an arbitrary, nonempty, finite

subset of R, RF, all of the strings that meet

Definition 6.01, except that the strings are

constructed from LBF and RF, are finite words.

Proof: Because LBF and RF are nonempty and finite,

the overall alphabet-set of the semantic-

network strings, LBFURF, is nonempty and

finite. Therefore, these semantic-network

strings meet the first of the two constraints

for formal words (see Definition 3.01 of

Section III).

The second constraint, finite length (see

Definition 3.02 of Section III), is met by the

constraint that Iaj=IbI=IrI=l. Hence, each
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i r2string is of length three, a finite number.

Therefore, each string is a finite word over

LBF URF. Q.E.D.

Since the semantic-network words now exist, the search

for a language-type can begin. But, this search is very

short in comparison to the previous search for the SN

language-type.

Theorem 6.13: For an arbitrary, nonempty, finite subset of

LB, LBF, and an arbitrary, nonempty, finite

Usubset of R, RF, the semantic network, SF,

consisting of all the semantic-network words

meeting Definition 6.01, except that the words

are over LBF and RF, is a finite set and hence

a type-3 language.

Proof: Let the size of LBF be a nonzero, finite

number, J. Also let the size of RF be a

nonzero, finite number, K. Following the same

*r technique of matrix construction used in

Theorem 5.02 of Section V and Theorem 6.02,

construct the SF set as a three-dimensional

matrix. That is, for each of the K relations,

construct a two-dimensional matrix similar to

Figure 14 as follows: For each relation,

replace m in Figure 14 by the individual

relation and let C0,CI,...CM represent the

Snode labels in LBF. Let the M value in Figure
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14 be equated to J. Finally, let the XX

symbol still represent the a=b cases.

For this three-dimensional matrix, each of

the two-dimensional matrices contain a total

of J(J-l) entries. Since there are K two-

dimensional matrices, the overall matrix

consists of J(J-l)K entries. But, J and K are

finite numbers. Therefore, J(J-1)K is a

finite number and so SF is a finite set.

Using this finite-size characteristic,

Theorem 6.12, and applying Definitions 3.19,

3.21 and Theorem 3.12 of Section III, SF is a

found to be a type-3 language. Q.E.D.

1By constraining the node-label and relation sets to be

finite, a formal language can be obtained for the case where

node labels and relations are symbols. However, Theorem

6.13 only deals with a single arbitrary case of converting a

subset of strings in SA into some formal language. The next

theorem expands this finding to cover a class of languages.

Theorem 6.14: There exists a countably infinite number of

semantic-network languages where each language

is finite in size and consists of all the

words meeting Definition 6.01, except that the

node labels and relations are selected from

arbitrary, nonempty, disjoint, finite sets of

symbols.
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Proof: Theorem 6.13 was based on selecting a single,

finite subset of node labels from LB and a

single, finite subset of relations from R to

generate a semantic-network language that is

finite in size. Applying Theorem 3.10 of

Section III, there are a countably infinite

number of finite subsets that can be selected

from both LB and R. Now, from set theory, the

empty set 0 is a finite subset of any set.

Hence, 0 is a member of each of these count-

ably infinite sets of node labels and

relations.

Because of the nonempty-constraint, these

empty sets must be removed from the sets of

node labels and relations. By applying the

f(x)=x-l mapping on the indexes of the remain-

ing finite sets of both node labels and

relations, there still exists a countably

infinite number of finite subsets of node

labels and relations.

Now, construct the matrix given in Figure

18, where the rows represent the relation-set

used to generate a given semantic-network

language and the columns represent the associ-

ated node-label set. That is, each entry

represents a node-label and relation set that
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'j0 LBFO LBF1 LBF2

RFO RFO,LBFO RF0,LBF1 RF0,LBF2

RFI RFI,LBFO RFI,LBFI RF1,LBF2

RF2 RF2,LBFO RF2,LBF1 RF2,LBF2

Figure 18. Node-Label and Relation Sets

can be used to generate a finite semantic-

network language.

Since there is a countably infinite

* number of finite node-label sets, each row in

this matrix has a countably infinite number of

entries. By performing the union operation on

the countably infinite number of rows and

applying Theorem 3.05 of Section III, there is

a countably infinite number of unique entries

in the matrix. Therefore, there exists a

countably infinite number of unique semantic-

network languages that are finite in size.

Q.E.D.

Because finite languages have been studied extensively

by Maurer et al. (99; 100), further investigation of the

characteristics of these finite semantic-network languages

is not provided. However, it is important to notice that

when the node labels and relations are selected from arbi-
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trary, countably infinite, disjoint symbols, then no single

semantic-network language exists that can contain all the

possible semantic-network words. See Section IX for addi-

tional affects of the node-label and relation languages on

the semantic-network languages.

Category 1 Class. Since the SN version of the semantic

network does contain all possible semantic-network words for

given Z and Y alphabets, the characteristics of the SN

language merit further investigation. Due to the fact that

the general characteristics of context-free languages have

been studied extensively, the common characteristics of

type-2 languages (e.g. normal grammar forms, word membership

algorithm, parsing algorithm) that apply to SN are not

investigated further. The reader is referred to references

6, 92, 93, 94, 95, 96 and to the references contained in

Appendix A for information on how to determine these indi-

vidual type-2 characteristics.

4 However, there are characteristics of a class of

semantic-network languages that contains the SN language

that directly affect later findings of this investigation.

The characteristics of this class are covered in depth.

Theorem 6.15: Any semantic network consisting of all the

words meeting Definition 4.02 of Section IV,

except that the node-label set and the

relation-set are any nonampty, regular sets

over Z and Y, respectively, is at least a

type-2 language.

138



Proof: This proof follows directly from Haines (98)

and the proofs of Theorems 6.06 and 6.14.

Haines proved that for any centermarker-

language where the x and y strings of the

centermarker-word xcy are selected from any

regular set, the resulting language is type 2.

By applying the constraint of a nonempty,

regular set on the node labels, Haines'

necessary condition for the type-2 language

finding is met. The nonempty-constraint comes

from the network's definition and does not

affect Haines' theorem in any way.

However, the constraint that the center-

marker is only a single symbol is not met.

Theorem 6.06 resolved this constraint for one

regular relation-set by showing that the same

type of machine (not identical machines) that

accepts Haines' centermarker-languages also

accepts the SN language. The key in that

proof was the replacement of the c accepting

mechanism with the finite automaton that

-%accepts the Y + relation-words.

Since Definition 3.21 of Section III

establishes that all regular sets are accepted

by some finite automaton, the proof of Theorem

. 6.06 can be expanded to include any nonempty
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regular set of relation-words. That is,

replace the c accepting mechanism with the

specific finite automaton that accepts the

nonempty, regular relation-set. The nonempty-

constraint maintains the condition that a

centermarker must exist for these words.

Since the power of a machine does not change

by adding (subtracting) a finite set of states

to (from) a machine (93), the type of machine

does not change for any nonempty, regular

relation-set. Hence, these semantic-network

languages are upper bounded at type 2.

Now, to show the "at least" constraint,

Theorems 6.06 and 6.14 are needed. Theorem

6.06 established that SN is exactly a type-2

language. Since SN uses nonempty, regular,

node-label and relation sets, SN must be

contained in the class of category-i languages

covered by this theorem.

Next, Theorem 6.14 established the exist-

ence of a countably infinite set of type-3

semantic-network languages where the node

labels and relations are selected from dis-

joint, nonempty, finite regular sets. If Z+

and Y+ are used as the countably infinite sets

r7 of symbols in Theorem 6.14, then these finite

languages are also contained in the class of
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category-i languages covered by this theorem.

Therefore, since both type-2 and type-3

semantic-network languages are contained in

this class of category-i languages covered by

this theorem, it follows from Chomsky's

language-hierarchy (8) and the upper type-2

language bound that these semantic-network

languages are at least type-2. Q.E.D.

As seen from Theorem 6.15, SN is only one of a number of

possible semantic-network languages each of which has only

category-i characteristics (see Tables IV, V and VI in

Section IV). The actual size of this class of languages

provides another important characteristic.

Theorem 6.16: Th, SN semantic-network language, consisting

of all the words meeting Definition 4.02 of

Section IV, is a member of class of languages

that consists of a countably infinite number

of type-2 semantic-network languages.

Proof: This proof follows from Theorem 3.18 of

Section III and Theorems 6.02, 6.06, 6.14 ind

6.15. Theorem 6.15 established that type-2

semantic-network languages can be constructed

provided the node labels and relations are

selected from nonempty, disjoin-, regular

sets. Theorems 6.02 and 6.06 revealed the

existence of at least one language that is
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countably infinite in size, SN, that meets the

* constraints of Theorem 6.15. By using Z+ and

Y+ as the arbitrary, countably infinite sets,

Theorem 6.14 shows the existence of a count-

ably infinite set of semantic-network

languages each of which is finite in size and

also meets the regular-set constraints of

Theorem 6.15. Hence, since SN is countably

infinite in size, SN cannot be contained in

this countably infinite set of finite lan-

guages. From set theory, the union of a

finite set and a countably infinite set is

countably infinite. So, SN is a member of a

set of languages that is at least countably

infinite in size.

To prove the upper bound, the size of

language space is needed. From Theorem 3.18

of Section III, there exists a countably

infinite number of languages over a given

alphabet. Therefore, the upper bound for this

class of category-i languages is countably

infinite. Since both the upper and lower

bounds agree, this class of semantic-network

languages is countably infinite in size.

Q.E.D.

So, zt the category-i level of the definition-hierarchy

'" (see Figure 12 in Section IV) there exist countably infinite
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-.- numbers of semantic-network languages of which SN is a-., "....

member. The fact that this class consists of all possible

languages over the regular node-label and relation sets

yields a further characteristic about this class of

cat egory-i languages.

Theorem 6.17: The class of category-i languages consisting

of semantic-network languages where each

language consists of all the words meeting

Definition 4.02 of Section IV, except that the

node-label and relation sets for each language

are any nonempty, regular sets over Z and Y,

respectively, is not closed under the union

operation.

Proof: This proof follows from construction of a

counter-example. For this proof, arbitrarily

select the Z and Y alphabets as follows: Z=[c,

d, g, h, k) and Y=(p, s, t, x, y). For the Z

alphabet, arbitrarily select two finite,

regular sets as follows: Sl=[c, d) and S2=[g, hi.

For the Y alphabet, arbitrarily select two

finite, regular sets as follows: Tl=(p, ti and

T2=[x, yj. Now, construct two semantic-network

languages using SI-Ti and $2-T2 as the node-

label and relation sets: Ll=[cpd, dpc, ctd, dtcl

and L2=[gxh, hxg, gyh, hygi. Finally, using

these two languages, form a third language by
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the union operation: L3=[cpd, dpc, ctd, dtc,

gxh, hxg, gyh, hygl.

By this construction, Li and L2 meet the

constraints needed to be members of this class

of semantic-network languages. That is, each

of these two languages consists of all the

words meeting Definition 4.02 of Section IV

except that the node labels and relations are

selected from some nonempty, regular sets over

Z and Y, respectively. However, the language

formed from their union, L3, does not meet

these constraints.

The L3 language contains semantic-network

words formed from regular sets of four indi-

vidual node labels, S3=[c, d, g, h) and four

individual relations, T3=[p, t, x, yl. But, L3

does not contain all possible semantic-network

words over the S3 node-label set and the T3

relation-set. For example, the legal

semantic-network word "cxg" is not contained

in L3. Yet, by definition of the semantic-

network languages contained in this class of

category-i languages, this specific word (and

others) must be contained in a semantic-

network language over S3 and T3. Therefore,

L3 is a finite language but is not a semantic-

[network language over these regular sets.
14
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R

Since the union closure property requires that

L3 be in the class, it follows that this class

of category-i languages is not closed under

the union operation. Q.E.D.

As was the case for the class of category-l production-

rule languages (see Theorem 5.16 of Section V), this union

closure property is not the only regular operation that this

class of semantic-network languages does not meet. The

class also does not meet the product closure property. (The

reader is referred to the paragraph preceding Theorem 5.16

of Section V for the definition of product closure).

Theorem 6.18: The class of category-i languages consisting

of semantic-network languages where each

language consists of all the words meeting

Definition 4.02 of Section IV, except that the

node-label and relation sets for each language

are any nonempty regular sets over Z and Y,

respectively, is not closed under the product

operation.

Proof: This proof follows from the construction of a

counter-example. For any two semantic-network

languages in this class of category-i lan-

guages, this product operation will generate

strings of the form "AlRlBlA2R2B2." Because a

semantic-network word has only one relation-

word, the product operation generates illegal

network-words. Hence, the strings generated
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by the product operation cannot be contained

in any semantic-network language. So, this

class of category-1 semantic-network languages

is not closed under product. Q.E.D.'
These nonclosure properties of this class of semantic-

network languages lead to the last characteristic of this

class of languages that is presented in this section. This

characteristic is that this class of semantic-network

languages does not form an Abstract Family of Languages.

Theorem 6.19: The class of category-1 languages consisting

of semantic-network languages where each

language consists of all of the words meeting

Definition 4.02 of Section IV, except that the

node-label and relation sets for each language

are any nonempty regular sets over Z and Y,

respectively, is not an AFL.

Proof: From reference 24, an AFL contains languages

that are closed under six operations: union,

A ,product, Kleene closure, e-free homomorphism,

inverse homomorphism and intersection with a

regular set. From Theorems 6.17 and 6.18,

this class of category-i semantic-network

languages is not closed under either union or

product. Therefore, this class of category-i

semantic-network languages cannot be an AFL.

Q.E .D.

.%.

146

... "



I

.. The result of Theorem 6.19 presents a major stumbling

block to the further study of this class of category-i

semantic-network languages. Because this class is not an

AFL, the determination of additional characteristics of this

class has to involve the analysis of the entire set of

*network-languages in the class. Thus, the multitude of the

characteristics proven about AFLs by formal-language

theorists cannot be used to help expand the characteristic

set of this class of languages.

The characteristics of AFLs are not the only character-

istics that do not apply to this class of languages. The

characteristics of the general class of type-2 languages

also do not apply. For example, the entire set of Chomsky's

type-2 languages forms an AFL but this class of category-I

semantic-network languages does not. Another example is

that the entire set Chomsky's type-2 languages is closed

under the regular operations of union and product (6:12),

yet this class of languages is not.

So, while this class of category-i semantic-network

languages is a set of type-2 languages, the characteristics

of the general type-2 languages cannot be used, without

proof, when referring to this class of languages. Even

though other characteristics of this class of languages as

well as the characteristics of other classes of category-i

semantic-network languages could be investigated, sufficient

information is now known such that the comparison of the

production-rule and semantic-network languages can begin.
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VII. Comparison of Rules and Networks

In Sections V and VI, the characteristics of the

production-rule and semantic-network languages were found to

be similar. At the category-i level of the definition

hierarchies (see Section IV), there exist special classes

consisting of countably infinite numbers of production-rule

and semantic-network languages. Each language in those

classes is at most a type-2 language. However, each of the

classes itself is not an Abstract Family of Languages (24).

Because of these similarities, the question of equivalence

(one-for-one and onto) of these representation languages

comes to the forefront of this investigation. Therefore,

this section begins by investigating the production-rule and

semantic-network language equivalence, then, transforma-

tions between these languages are analyzed.

Equivalences

The question of equivalence between these two represen-

tation languages can be answered for two cases. The first

case is the trivial one where the implies relation does not

4. exist as a semantic-network relation and the bijective

mapping Rl=m/m=Rl between one word in the relation-set and

the symbol m is not allowed. Because the fact-set and the

node-label set are arbitrary, these two sets can be mapped

_into one another by using alphabets of the same size.
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However, if the m and relation centermarkers have no common

mapping, then these two languages cannot be equivalent.

The second case is where either the implies relation

does exist as a semantic-network relation or the bijective

mapping Rl=m/m=Rl between one word in the set of relations

* and the symbol m is allowed. Under either one of these

conditions, equivalence of special sets of languages are

shown to exist. For clarity in stating theorems that depend

on these mapping conditions, the conditions are restated irt

the following definition of "condition-A." The theorem

statements will then refer to these mapping conditions by

stating that the languages meet condition-A.

Definition 7.01: Production-rule and semantic-network

languages are said to meet condition-A if

either the implies relation does exist as a

semantic-network relation or the bijective

mapping Rl=m/m=Rl between one word in the

relation-set and the symbol m is allowed.

Using this definition, the first of several equivalence

theorems is given as follows:

Theorem 7.01: For the special classes of category-i

production-rule and semantic-network languages

(see Theorem 5.13 of Section V and Theorem

6.15 of Section VI for class definitions),

there exists a countably infinite set of

equivalent pairs of finite production-rule and
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finite semantic-network languages. The

languages in this set meet condition-A.

Proof: This proof relies on construction. First,

*. consider the fact and node-label sets.

Because the production-rule's set of facts and

the semantic-network's set of node labels are

constructed from arbitrary, nonempty, finite

alphabets, a simple bijective mapping between

the alphabets can be used as the basis for

mapping between these sets. This mapping

consists of making the size of the alphabet

symbols of these two sets the same and

equating the alphabet symbols one-to-one.

Then, by applying the regular set constraint

on these isomorphic alphabets, isomorphic

fact and node-label word-sets results.

Next, for each of these isomorphic

alphabets, perform the e-free Kleene closure

(i.e. Z+ ) and select all possible finite

subsets. From Theorem 3.10 of Section III and

the fact that these alphabets are isomorphic,

this action results in the formation of a

countably infinite number of pairs of isomor-

phic finite subsets. Because the empty set

is a finite subset of every set, one pair of

these isomorphic sets involves the empty set.

Since the fact and node-label sets cannot be
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empty, this isomorphic pair must be removed

from this group of isomorphic pairs. By

applying the f(x)=x-i mapping to the indexes

of the remaining pairs of isomorphic subsets,

there is still a countably infinite number of

pairs of isomorphic finite subsets.

Now that the finite fact and node-label

sets have been isomorphically mapped, con-

struct the finite set of relation-words needed

for the centermarker mapping as follows. For

the relation-alphabet Y, perform the e-free

Kleene closure Y+. From this countably

infinite set, apply Theorem 3.10 of Section

III to obtain the countably infinite number of

finite subsets of relation-words. As before,

remove the empty set 0 and apply the f(x)=x-1

mapping to the indexes of the remaining

subsets to obtain a countab.y infinite number

of nonempty, finite relation-sets. Then, from

these finite relation-sets, select the single-

element set that either contains the implies

relation or contains the relation where the

bijective mapping of Rl=m/m=Rl is allowed

(only one subset exists). This relation-set

becomes the isomorphic centermarker for the

two language versions.
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" .,With the fact, node-label and relation

sets established, consider first the mapping

of semantic networks to production rules.
N

A' Construct the semantic-network languages as

follows: Pair up each of the sets of node-

' labels previously constructed with the

*. relation-set consisting of the isomorphic

centermarker. Then, using each of these

pairs, construct a finite semantic-network

language (see Theorem 6.13 of Section VI for

proof of the finite cardinality). The lan-

guage is constructed to consist of all the

words meeting the constraints of Definition

4.02 of Section IV, except the node-label and

relation sets are finite sets of words.

Because the node-label and relations sets are

finite, each set is also a regular set (see

Definition 3.19 of Section III). Therefore,

each of these finite semantic-network

languages is a member of the special class of

category-i semantic-network languages (see
'

Theorem 6.15 for class definition). Also,

since there is a countably infinite number of

these finite node-label sets, there is a

countably infinite number of finite

semantic-network languages that are

constructed.
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Now, to each of these finite

semantic-network languages, apply the bijec-

• tive mapping m=Rl and exchange each node-label

word with its previously constructed isomor-

phic fact-word. For each network-language,

* this action results in the generation of an

equivalent, finite, production-rule language.

Because each of the equivalent production-rule

languages has an associated finite, and hence

regular, set of facts, each rule-language is a

member of the special class of category-i

production-rule languages. Since there is a

countably infinite number of these finite

semantic-network languages, there is a

countably infinite number of production-rule

languages generated.

Next, consider the mapping of production

rules to semantic networks. Use each of the

finite fact-sets constructed previously and

construct the countably infinite set of finite

production-rule languages (see Theorem 5.11 of

Section V for proof of the finite cardinal-

ity). Each language is constructed to consist

of all the words meeting the constraints of

Definition 4.01 of Section IV, except the

*fact-set is a finite set of words. Since each

set of facts is finite in size and hence
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regular, each language is a member of the

, .%"special class of category-i production-rule

languages.

Now, to each of these production-rule

,languages, apply the bijective mapping Rl=m

and exchange each fact-word with its pre-

viously constructed isomorphic node-label

word. For each rule-language, this action

results in the generation of an equivalent,

finite, semantic-network language. Because

each of the equivalent semantic-network

-. languages has finite, and hence regular, sets

of node labels and relations, each network-

language is a member of the special class of

category-I semantic-network languages. Since

there is a countably infinite number of these

finite production-rule languages, there is a

countably infinite number of semantic-network

languages generated.

Finally, because the rule-to-network

mapping uses exactly the same isomorphic fact,

node-label and relation sets as the network-

to-rule mapping, the network (rule) language

that is produced as a result of the rule-

to-network (network-to-rule) mapping is

identical to the network (rule) language used

to generate the original rule (network)

154



language. Therefore, the rule-to-netwc-k and

network-to-rule mappings produce pairs

equivalent, finite, production-rule and

semantic-network languages. Hence, there

exists a countably infinite number of pairs of

equivalent, finite production-rule and finite

semantic-network languages. Q.E .D.

Even though there is a countably infinite number of

pairs of equivalent finite languages, there still exists a

countably infinite number of finite semantic-network

languages that are not equivalent to any of the finite

production-rule languages.

Theorem 7.02: For the special classes of category-i

production-rule and semantic-network languages

(see Theorem 5.13 of Section V and Theorem

6.15 of Section VI for class definitions),

there exists a countably infinite number of

finite semantic-network languages that are not

equivalent to any finite production-rule

language.

Proof: This follows directly from the proof of

Theorem 7.01. In that proof, the isomorphic

mapping between pairs of production-rule and

semantic-network languages uses only one of

the countably infinite, finite relation-sets

for the centermarker mapping. For a given

alphabet Z and Y, there still exist the other
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semantic-network languages that can be con-

structed out of the remaining finite relation-

sets. These languages are not equivalent to

any finite production-rule language. This is

shown in Figure 18.

.* In Figure 18, let the RF0 relation-set be

the single-element relation-set of Theorem

7.01. Next, let each LBF(i) represent one of

the finite node-label sets of Theorem 7.01.

.Then, the row marked RFO represents the

isomorphic set of semantic-network languages

of Theorem 7.01. The remaining rows r2present

the other finite semantic-network languages

that are not equivalent to any finite

production-rule language. They cannot be

equivalent because the relation-sets used to

construct them either contain more than one

relation-word or do not contain the necessary

centermarker relation-word.

Continuing to refer to Figure 18, remove

the RFO row from the matrix. Using the

additional mapping of f(x)=x-i on the indexes

of these remaining finite relation-sets, there

still exists a countably infinite number of

rows in this matrix. Since each row repre-

sents the pairing of a finite relation-set

with each of the countably infinite number of
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finite, node-label sets of Theorem 7.01, there

is a countably infinite number of semantic-

network languages possible per row. Applying

Theorem 3.05 of Section III to the union of

these remaining rows, there is a countably

infinite number of finite, semantic-network
4.

languages that are not equivalent to any

finite production-rule language. Q.E.D.

Now that the equivalence and nonequivalence cases for

finite production-rule and semantic-network languages have

been determined, the same cases for languages having count-

ably infinite cardinality need investigating. First, the

equivalence of the production-rule language, PR, and the

A semantic-network language, SN, is determined.

Theorem 7.03: The category-i production-rule language, PR,

that consists of all the words meeting Defini-

tion 4.01 of Section IV, is not equivalent to

the semantic-network language, SN, that

consists of all the words meeting Definition

4.02 of Section IV. These languages meet

condition-A.

Proof: As was the case for the previous two theorems,

this proof also relies on construction.

First, let the fact and node-label alphabets

used in PR and SN be bijectively mapped by

equating their symbols as was done in Theorem
V I'.

7.01. Then, the required closure , yields
$
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isomorphic fact and node-label word-sets

between the rule and network languages.

Next, perform the Y+ closure on the

relation-alphabet. In this set, identify the

relation Rl where the bijective mapping to the

m symbol is allowed. Using this Ri word,

group together all the words in SN that

contain RI as their relation-word. Because of

the isomorphic mapping of the fact and node-

%- label sets and the Rl=m/m=Rl mapping, this

group of SN words is equivalent to the PR

language.

However, there exist additional words in

SN that are not contained in this isomorphic

group of words. This follows directly from

the fact that Rl is a single word and Y+

contains countably infinite words. Therefore,

there exist words in SN where the relation in

the word is not bijectively mapped to m.

Hence, all the words in SN cannot be bijec-

tively mapped into all of the words of PR and

so PR and SN cannot be equivalent. Q.E.D.

Even though PR and SN are not equivalent, there exists

one category-1 semantic-network language that is equivalent

to PR.

Theorem 7.04: There exists only one category-i semantic-

network language that is equivalent to the
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production-rule language PR. These languages

meet condition-A.

Proof: This proof is by construction. Construct a

-subset of the special category-i semantic-

network languages (see Theorem 6.15 of Section

VI for class definition) as follows. For each

semantic-network language in this subset, use

the Z regular set as the node-label set and

one of all the possible unique regular sets

over Y for the relation-set.

Now, use the techniques of Theorem 7.01 to

bijectively map the node-label alphabet to the

fact-alphabet of PR. Then, the Z + closure

yields isomorphic fact and node-label word-

sets. Because PR is constructed from only the

Z + regular set, only those network-languages

in this specially constructed subset of

network-languages can possibly be equivalent

to PR.

Next, apply the bijective mapping of

Rl=m/m=Rl to one and only one of the semantic-I

network's relations. Because each of the

relation-sets is a unique regular set, there

exists one and only one semantic-network

language in this subset of network-languages

that has the single R1 relation as its

relation-set. Since this semantic-network
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language is constructed over the required

Z'node-label set and the Rl=m/m=Rl mapping

applies to the only relation-word in this

network-language, it is the only category-i

semantic-network language that can be mapped

to PR.

Finally, using the techniques of Theorem

7.01 and reversing the steps of this proof, PR

can be shown to map to this identical

semantic-network language. Hence, there

exists only one category-l semantic-network

language that is equivalent to PR. Q.E.D.

*. By using different, countably infinite, regular subsets
+ + -

of Z for the node labels (e.g. Z -[F(i)}, F(i)C Z+), Theorem

7.04 can be expanded to show that there exists a countably

infinite set of pairs of equivalent production-rule and

semantic-network languages. Each language in one of these

I.. pairs has countably infinite cardinality. However, by using

different regular subsets of Y+, it is shown that there

exists a countably infinite set of semantic-network lan-

guages that are not equivalent to any production-rule

.anaunqc. Thn snmantic-network languages in this set have

countably infinite cardinality.

Theorem 7.05: There exists a countably infinite number of

countably infinite category-i semantic-network

. "languages that are not equivalent to any
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countably infinite category-i production-rule

language.

Proof: This proof is by construction. First, apply

the bijective map between the fact-alphabet

and the node-label alphabet and construct the

isomorphic fact and node-label sets. However,

there is an additional constraint on these

sets. From the proofs of Theorem 5.02 of

Section V and Theorem 6.02 of Section VII, any

production-rule or semantic-network language

that has countably infinite cardinality has a

countably infinite fact-set or a countably

infinite node-label (or relation) set, respec-

tively. So, for the first part of this proof,

select a countably infinite regular set for

the isomorphic fact and node-label sets.

Next, using this countably infinite

node-label set, construct a set of countably

infinite semantic-network languages as

follows. First, perform the Y+ closure on the

relation-alphabet to generate all the

relation-words. Then, for each relation R(j)
S

in Y , construct the relation-set Y -[R(j)j.

Since Y+ and [R(j)} are each regular sets,

applying the difference closure property of

regular sets yields that each of these new

relation-sets are also regular sets (92:186).
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Because they are regular sets, they can be

used to construct semantic-network languages

that are contained in the special class of

category-i languages (see Theorem 6.15 for

class definition). Each of these languages

has countably infinite cardinality. There-

fore, for each of these relation-sets and the

given node-label set, construct a set of

countably infinite category-i semantic-network

languages.

Now that a set of countably infinite size

semantic-network languages has been con-

structed, the size of this set can be deter-

mined. Since Y+ has of a countably infinite

number of individual relations R(j), there is

a countably infinite number of Y -[R(j)1 regular

sets that can be constructed. Because each of

these semantic-network languages is con-

structed from one of these regular relation-

sets, it follows that this set of network-

languages is countably infinite in size.

With the size of this set established, all

that remains is to show that the semantic-

network languages in this set cannot be

equivalent to any production-rule language.

First, by applying the f(x)=x-l mapping to the

remaining relation-words in each of the
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Y -[R(j)) relation-sets, each of these regular

relation-sets is found to be countably infi-

nite in size. Hence, no semantic-network

language exists in this set of network-

languages that has a relation-set of length of

one.

Because of this characteristic, it follows

from the proof of Theorem 7.03 that each

semantic-network language in this set of

network-languages contains words that cannot

be isomorphically mapped to any words con-

tained in any category-i production-rule

language. Therefore, there exists a countably

infinite set of countably infinite category-i

semantic-network languages that are not

equivalent to any category-i production-rule

language.

Finally, from Theorem 3.18 of Section III,

because there only exists a countably infinite

number of possible languages, there is at most

a countably infinite number of unique node-

label sets that can be used to construct other

sets of these semantic-network languages.

From Theorem 3.05 of Section III, the union of

all these sets of semantic-network languages

yields a countably infinite number of count-

ably infinite category-i semantic-network
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languages that are not equivalent to any

* -'" countably infinite category-i production-rule

language. Q.E.D.

With the proof of Theorem 7.05 complete, sufficient

information now exists to reach the general conclusion on

the equivalence of the special classes of category-i rule

and network languages.

Theorem 7.06: The special class of category-i production-

rule languages is not equivalent to the

special class of semantic-network languages

(see Theorem 5.13 of Section V and Theorem

6.15 of Section VI for class definitions).

Proof: Because finite languages cannot be equivalent

to countably infinite languages, it follows

from Theorems 7.02 and 7.05 that this special

* class of category-i semantic-network languages

*contains finite and countably infinite lan-

guages that are not equivalent to any

production-rule language. Therefore, the

special class of category-i semantic-network

• ,languages is not equivalent to the special

*class of category-i production-rule languages.

-Q.E.D.

So, even though special cases of equivalent production-

rule and semantic-network languages exist, these special

classes of category-1 production-rule and category-i

semantic-network languages are not equivalent. Further
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details of the impact of this finding are given in Sections

VIII and IX. While these classes of languages are not

equivalent, the question now arises about t'ie ability to

transform one type of language into another by any kind of

mapping.

Trans format ions

Transforming one language into another depends on the

ability to convert the constrained words of one language

into the constrained words of the other. Or, in equivalent

fashion, the ability to transform the grammar generating one

language into one that generates the new language. From the

proofs of Theorems 7.01 and 7.04, the transformation from a

production-rule language to a semantic-network language is

seen to be straightforward. Therefore, the rule-to-network

transformation is considered first.

Theorem 7.07: Any production-rule language contained in the

special class of category-i rule-languages can

be transformed into an equivalent category-i

semantic-network language that is contained in

the special class of category-i network-

languages (see Theorem 5.13 of Section V and

Theorem 6.15 of Section VI for class defini-

tion) by the following transformation:

1. Equate the fact and node-label

alphabets and word-sets.

2. Equate the single implies symbol m to

a single relation-word that is over an
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alphabet disjoint from the node-label

alphabet and use this word as the

entire relation-set.

3. Replace the terminal sets as described

in steps 1 and 2 in the production-

rule grammar and use the resulting

grammar to obtain the semantic-network

language.

Proof: Step 1. From Theorem 5.13 of Section V,

any production-rule language in the special
.1

* class of category-i rule-languages has a

regular set over Z for the facts. From

Theorem 7.01, by assigning the fact-

alphabet to be the same alphabet for the

node labels, the regular set of facts

becomes the node-label set. This causes

the node-label set to become a regular set.

Hence, the first requirement of a category-

1 semantic-network language, a regular

node-label set, is met.

Step 2. By assigning the m symbol to a

single relation-word over an alphabet

disjoint from the node-label alphabet and

making this relation-word the entire

relation-set for the network-language,

another condition for the category-i

semantic-network language is satisfied.
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This condition is that the relation-set be a

. "e regular set disjoint from the node-label

alphabet.

Step 3. Word-for-word transformations can

be applied to generate the category-i

semantic-network language with the con-

straint, "consists of all the words over the

node-label and relation sets where aib,"

upheld. That is, by replacing the fact-words

with the node-label words and the m symbol

with the single relation-word, this constraint

that is already existing in the production-

rule language is automatically passed on to

the semantic-network language. However, when

the production-rule language has countably

. infinite cardinality, this word-for-word

transformation never terminates. This causes,

in turn, difficulty in proving that the

transformation generates an equivalent

semantic-network language. To overcome this

problem, a grammar-to-grammar transformation

is used.

Because the only difference between the

category-i production-rule and semantic-

... network words is the terminal set of symbols,

a grammar-to-grammar transformation can be

accomplished by simply changing the terminal
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set in the production-rule grammar. That is,

,. .in each of the grammar's generative rules,

replace m with the single relation-word Rl and

use the identical fact and node-label alphabet

for the remaining terminal symbols. Since the

form of the grammar's generative rules is not

changed by this grammar-to-grammar transforma-

tion, the a#b constraint on the production-

rule words is passed on to the semantic-

network word. Also, by maintainirg the same

form of grammar-rules, the modified grammar

still generates exactly the same number of

words as was contained in the original

rule-language. Therefore, the set of words

generated by this new grammar meet the last

constraint, "consists of all the words over

the node-label and relation sets where a#b,"

of a category-l semantic-network language.

Having proven that by following the steps

of this transformation a semantic-network

language can be obtained, all that remains is

to point out specifically that the network-

language is equivalent to the production-rule

language. This follows from several condi-

tions. One condition is that since the fact

and node-label alphabets are identical, the

regular word sets formed from these alphabets
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-~ are one-for-one and onto mappings. Another

condition is that the Rl and m symbols are

identity relations and therefore bijective.

The final condition is that the modified

grammar generates exactly the same number of

words as was or.ginally contained in the

production-rule language. That is, finite

languages transform one-to-one into finite

languages and countably infinite languages

transform one-to-one into countably infinite

languages. This convergence is guaranteed

because the original rule-language converged

using the same form and number of generative

rules.

From this proof of equivalence and the

fact that each transformation begins with a

given production-rule grammar (one is

guaranteed to exist), it follows that every

production-rule language contained in the

special class of category-i rule-languages can

be transformed into an equivalent semantic-

network language that is contained in the

special class of category-i network-languages.
,;
K. Q.E.D.

While this rule-to-network language transformation is

quite simple, the transformation of a semantic-network

language into a production-rule language is not. The
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problem that has to be overcome is the transformation of the

" "- relation-words that are not identical to the symbol m. In a

network-to-rule transformation, a one-for-one transformation

to the m symbol is not possible when several relations

exist. If a many-to-one transformation is used, then

4 important relationship information is lost.

To keep from losing this relationship information, a

fact-word in the production-rule word must exist that

contains this relation information as well as the node-label

Z. information. That is, when a semantic-network relation-word

is not equivalent to m, the a or the b fact-words in the amb

rule-word must contain both the relation and the node-label

word. In effect, the fact-alphabet has to become ZU Y. As

an example, let "CR3D" represent a semantic-network word

where "C" and "D" are specific node-label words and "R3" is

a single relation-word that is not equivalent to m (i.e. C

is related to D by R3). Then, one possible transformation

of this network-word yields a rule-word of the form

"Cm(R3D)." This rule-word reads "C implies is related to D

by R3." While somewhat awkward, the same information that

is contained in the semantic-network word is also contained

in the resulting production-rule word. However, there is a

problem with the resulting production-rule language when it

,. is used in a production-rule system.

This problem is that the production-rule language only

allows production-rule systems to be constructed in which"systems

each of the "(R3D)" fact-words is a terminal condition
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(answer). This can be seen from the description of produc-

tion rules given in Section I. A production rule "fires"

when the antecedent (C) is matched from the known informa-

tion that is contained in the situation data (see Figure 4).

The known information is either entered by a user or by the

firing of a rule. Because the C position never contains a

relation-word, the rule Cm(R3D) never activates any other

rule once it is fired. That is, the "(R3D)" fact-word never

*occurs in the antecedent position (a) of the amb production-

rule word. If another semantic-network word transforms into

the production-rule word "Dm(R4F)" (D implies is related to

F by R4), then firing rule Cm(R3D) does not activate the

Dm(R4F) rule as it should. However, there is a way to

correct this problem.

To solve this problem, the definition of category-i

semantic-network languages needs to be reviewed (see Theorem

6.15 of Section VI). Each of these network-languages

consists of all the words of the form arb where a and b are

members of a regular set. That is, words of the form

"CR(i)D" and "DR(i)C" exist in each network-language. Each

node D can be reached from node C by a relation R(i) and

each node C can be reached from D by the same set of rela-

tions. This cycle exists because the language has to

contain all possible words so that users can construct their

particular implementations of a semantic-network any way

they desire.
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Because this cycle results in all node labels being

S'" preceded by a relation, using the "[R(i)D]" form as the

fact-words preserves the needed relation-information and

corrects the "dead-end" problem. That is, every semantic-

network word is transformed into a production-rule word of

the form "[R(i)C~m[R(j)D3" where "i" and "j" may or may not

be equal. If the relation-set contains the implies relation

RI, the CRID word-forms can translate directly into CmD

word-forms. Therefore, the new production-rule language has

to consist of words of the following form: CmD, Cm[R(j)DI,

[R(i)C]mD and [R(i)C]m[R(j)D] in order to account for all

possible semantic-network words. Of course, the awkwardness

in reading the rule remains and is somewhat worse. But, all

information is preserved and the production-rule systems

using this language are able to operate as expected.

While these word transforms solve the dead-end problem

by using a particular partition of the semantic-network

word, they do not represent a legal transformation. As a

matter of fact, no legal transformation exists for an

arbitrary semantic-network language contained in the special

class of category-l network-languages.

Theorem 7.08: There does not exist a single information-

lossless transformation that will convert an

arbitrary semantic-network language contained

in the special class of category-i network-

languages into a production-rule language

contained in the special class of category-i
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rule-languages (see Theorem 5.13 of Section V

and Theorem 6.15 of Section VI for class

definitions).

Proof: This proof follows from the definitions of

semantic-network and production-rule lan-

guages. While all four word-forms discussed

in the paragraphs preceding this theorem need

to be available in order to transform any

network-word into a rule-word, they have

brought out the specific condition that can be

used to prove this theorem. For an

information-lossless network-to-rule trans-

formation, the resulting fact-set must consist

of words where the individual relation/node-

label associations (e.g. R3D, R2C) are identi-
-.

fiable. The term "identifiable" is used to

mean a one-to-one mapping of the relation/

node-label associations to unique words in the

fact-set, not necessarily a symbol-by-symbol

mapping of the relation/node-label strings to

the fact-strings. That is, every fact-word

must represent one of the unique relation/

node-label associations so that informatin is

rot lost in the transformation.

However, the fact-set consisting of these

* equivalent relation/node-label words is

directly affected by the previously identified
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semantic-network cycles CR(i)D/DR(i)C.

[ *~:Because of these cycles, every relation has to

be associated with every node label. Hence,

this transformed set of facts must contain

individual words for every relation/node-label

association. For example, let the node-label

set contain only two labels, C and D, and the

relation-set contain only two relations, R2

and R3. Then, to handle all the associations,

the fact-set must contain four words to

represent the R2C, R2D, R3C and R3D relation/

node-label associations.
r.

This requirement that the fact-set must

contain words for every relation/node-label

association creates a problem with any

network-to-rule transformation. By defini-

tion, a production-rule language that is a

member of this special category-i class of

rule-languages has to consist of all possible

words of the form amb where a~b. This

inequality constraint results in production-

rule words existing in the language where the

a and b fact-words can differ only by the

individual symbol placement in the fact-word.

That is, if the fact-set contains unique words

for every one of the relation/node-label

associations, the production-rule language
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must then contain rule-words in which the

node-label portion of the relation/node-label

association is identical in both the a and b

fact-words but the relation-portion is differ-

ent. For example, if the fact-set contains

two words representing two relation/node-label

associations, R2C and R3C, then, the

production-rule language must contain the

rule-words representing the equivalent of

"R2CmR3C" and "R3CmR2C."

However, by the definition of a semantic-

network language, the a~b node-label con-

straint prevents equivalent types of network-

words from occurring. That is, no semantic-

network word exists where identical node

labels occur in the a and b positions of the

arb word-form. Therefore, by applying any

general transformation on these network-words,

the resulting production-rule words must

maintain the unequal node-label constraint.

For example, let a semantic network consist of

two network-cycles, CR2D/DR2C and CR3D/DR3C,

where neither relation is the implies rela-

tion. Any information-lossless transformation

that maintains the node-label inequality has

to generate a set of rule-words that consists

of the equivalent rule-words: R2CmR2D,
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R2CmR3D, R3CmR2D, R3CmR3D, R2DmR2C, R2DmR3C,

R3DmR2C and R3DmR3C. Yet, by the definition

of a production-rule language, equivalent

rule-words of the form R2CmR3C, R2DmR3D,

R3CmR2C and R3DmR2D must also exist in a

rule-language over the four equivalent fact-

words of R2C, R3C, R2D and R3D.

So, no matter how the relation/node-label

associations are partitioned, there must

always exist a unique fact-word representing

each unique association. Therefore, any

general information-lossless transformation

used to transform an arbitrary category-i

semantic-network language into a production-

rule language actually transforms the network-

language into a subset of a production-rule

language. This subset of rule-words itself

does not meet the formal definition of a

category-i rule-language. By combining this

finding with the existence of the special-case

transformations of Theorems 7.01 and 7.04, it

follows that no single information-lossless

transformation exists that will transform an

arbitrary semantic-network language contained

in the special class of category-i network-

languages into a production-rule language
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contained in the special class of category-i

rule-languages. Q.E.D.

This theorem makes a very powerful statement. Even

though special cases exist where category-i semantic-network

languages can be transformed into equivalent category-i

production-rule languages, a general transform does not

exist for all semantic-network languages contained in this

special class of category-i network-languages. Therefore,

anyone performing any category-i network-to-rule transforma-

tion has to prove that their transformation is correct for

their special class of languages. Because part of the proof

of Theorem 7.08 showed that general network-to-rule trans-

formations do not necessarily generate a true production-

rule language, the proof of correctness of special-case

transformations may be very involved if not impossible.

Additional affects of this theorem, as well as other

theorems contained in this section, upon rule and network

languages are discussed in Section IX. Section X contains

suggestions regarding the techniques to use in proving the

correctness of special-case transformations. However, the

specific affects that all the previous theorems have upon

the remaining production-rule and semantic-network languages

in the definition hierarchy (see Section IV) are given in

the next section.
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VIII. Hiekarchical Language Results

So far this dissertation has dealt with only a special

class of category-i production-rule and semantic-network

languages (see Theorem 5.13 of Section V and Theorem 6.15 of

Section VI for class definitions). While detailed analysis

of all possible classes of category-i languages are not

performed herein, the results of the analysis of these

special classes of rule and network languages are used to

determine characteristics of higher category-level

representation-languages (see Section IV). From a review of

the proofs of these category-i theorems in Section V and VI,

it can be seen that the proofs for semantic-network lan-

guages only differ slightly from those of production-rule

languages. Therefore, instead of giving separate hierarch-

ical theorems and propositions for each of these representa-

tions, each theorem and proposition in this section covers

both rule and network representations. To begin developing

these hierarchical theorems, a review of the tables in

Section IV is required.

Hierarchical Language Expansion

After detailed evaluation of the tables in Section IV,

it is noticed that the differences among categories of

knowledge-words contained in these representations involve

only the form used to represent the knowledge. For example,

-" category-I knowledge-words represent knowledge as simple
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strings of symbols while a higher category level uses

functions with free variables to represent some of the

knowledge. From the investigations of the special category-

1 classes of languages, the language-type of the sets of

= knowledge-words (i.e. the language-types of the fact,

node-label and relation sets) was found to affect the

overall language-type of the representation.

The most critical impact was identified by the category-

1 theorems that ignore the language-type of the fact,

node-label and relation sets altogether (see Theorem 5.08 of

Section V and Theorem 6.08 of Section VI). These theorems

revealed that the resulting overall knowledge representa-

tions did not have formal language equivalents at all.

Hence, if the complexities of the knowledge-languages are

ignored at all the category levels, the same results would

be expected to occur. That is, if the language-type of the

knowledge-words contained in a representation's structure is

ignored, then no formal language equivalents exist for the

overall knowledge representation. This leads to the first

hierarchical theorem for these two knowledge

representations.

Theorem 8.01: Given any set consisting of all possible

production-rule or semantic-network strings

where the strings have the characteristics

listed for one of the category levels of the

definition-hierarchy (see Section IV). If the

antecedent/consequent (fact), node-label
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and relation sets are treated as only symbols

in alphabets, then, in general, the resulting

overall knowledge representations formed by

using these sets of strings are not formal

languages.

Proof: This proof follows directly from the category-

1 findings. Because the category-i character-

istics are included in all higher numbered

categories of characteristics, each of the

higher numbered categories of fact, node-label

and relation sets has to contain special

subsets for the strings that meet the

category-i characteristics. From Definition

5.01 of Section V and Definition 6.01 of

*' Section VI, one of these special category-i

subsets of strings for each of the fact,

node-label and relation sets are countably

infinite in size. Therefore, by using the

higher numbered categories of fact, node-label

and relation sets that contain these partic-

ular category-i subsets in the overall lan-

guages' alphabets, the size of these alphabets

has to be at least countably infinite.

Now, from the grammar definition (Defini-

tion 1.02 of Section I), a language-generating

grammar has to have a finite alphabet of

. "~ terminal symbols. Since the alphabets for
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these higher numbered categories of represen-

tations are at least countably infinite, no

grammar exists that will generate forma

language versions for these higher numbered

categories of representations.

However, if each of the category-1 subsets

is finite as well as the number of remaining

symbols in the higher category-level alphabets

(the knowledge-language could still be ignored

even though these finite sets are type-3

languages over a different alphabet), then the

grammar exists and a language version also

exists. Therefore, depending on whether or

not the set of knowledge-words is countably

infinite, these production-rule and semantic-

network representations cannot be formal

languages. Q.E.D.

While Theorem 8.01 proved that cases exist where the

production-rule and semantic-network representations cannot

be formal languages, it remains an open question as to the

exact language-types, if any, of the representations that

contain knowledge-words which have all the characteristics

listed for the top category of the definition-hierarchy (see

Section IV). The problem comes from developing all the

detailed constraints needed to generate an all-inclusive

description of such a complex set of knowledge-words.

Questions continue to come up that have no absolute answers.
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For example, how deep can Boolean combinations be nested?

Are value assignments (like those used in MYCIN) additive so

that the a#b constraint has to be modified? Are free

variables used in conjunction with procedure calls for

variable passing? Can procedure calls be nested? These are

but a sample of the problems that have to be overcome to

A reach a reasonable definition of the top-category

characteristics.

Even though these problems are difficult and have not

been resolved sufficiently in this dissertation, the conjec-

ture used herein is that the set of knowledge-words at each

category level is a formal language and the overall repre-

sentation that uses these knowledge-words is also a formal

language. This conjecture is supported by the existence of

various programming languages like OPS5 and ROSIE (101) that

operate with representations containing knowledge-words

which have some of these complex characteristics. However,

because of the possible countably infinite variations,

reaching any final conclusion about the hierarchy of rule
w.

and network languages based on so small a sample would be

foolish if not ridiculous.

In order to provide as much insight into these knowledge

representations as possible, this conjecture is assumed to

be true for both the production-rule and semantic-network

representations. As a result, the findings on the special

category-i classes of rule and network languages can then be

.5used to reach conclusions about these hierarchical sets of
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[,"hp knowledge representations. Since these hierarchical

findings will be based on this conjecture, these findings

will be presented as propositions, not theorems. Section IX

and X contains further discussion on resolving this conjec-

ture so that these propositions may be converted into

theorems.

However, before any propositions can be presented, the

conjecture must be formally defined. For clarification,

separate conjectures will be given for each representation.

Conjecture 8.01: The allowable sets of all possible

knowledge-words formed at each category

level of Tables II and III of Section IV

produce formal language equivalents. When

each of these knowledge-languages is

combined with the production-rule's

structure, a forral language equivalent

exists for the overall representation.

Conjecture 8.02: The allowable sets of all possible

knowledge-words formed at each category

level of Tables IV, V and VI of Section IV

produce formal language equivalents. When

each of these knowledge-languages is

combined with the semantic-network's

structure, a formal language equivalent

exists for the overall representation.

Using these conjectures, the following propositions can

be proven.
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Proposition 8.01: Given that Conjectures 8.01 and 8.02 are

true, then, in general, the top-category

language equivalents of the production-

rule and semantic-network representations

cannot be context-free (type-2) languages.

Proof: This proof follows by construction and

from the formal language evaluations of

computer programming languages. By the

inclusion hierarchy property of Section

IV, the top-category knowledge-languages

contained in the production-rule and

semantic-network representations have

words that allow arbitrary procedure calls

*. to be made. Because these procedures

themselves can be implemented in any

computer programming language, they may be

considered, without loss of generality, as

being formal language "sentences" over an

alphabet that is disjoint from the rest of

the alphabet-symbols in the knowledge-

language's alphabet. That is, the

procedure-sentence is made up of words

that have no common alphabet-symbols with

the other knowledge-words.

Now, by construction, remove the

procedure-call words from the top-category

-. knowledge-language (a knowledge-language
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exists per Conjectures 8.01 and 8.02) and

replace them with their equivalent,

disjoint sentences. Recall that this

dissertation is removing the semantics

from the words and evaluating the result-

ing syntax. Therefore, this replacement

action removes the semantics (meaning) of

a procedure call by replacing it with the

syntax strings that it represented.

Because the procedures are arbitrary,

this replacement process will result in

incorporating all possible procedure-

sentences in order to handle all possible

procedures that a user may require. By

applying a set's property that duplicate

words are not allowed, the union of all

the sentences yields all of the words of

the original computer programming language

that incorporated the procedures. That

is, the knowledge-language resulting from

this construction contains all the words

of the implementing computer programming

language as members. Since these words

consist of alphabet-symbols that are not

used in any other knowledge-word, the

words of the computer programming language

can be easily identified in the knowledge-
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4 language. Because of this separation of

** , *the words of the programming language and

the remaining knowledge-words, any machine

accepting the knowledge-language will have

to accept this implementing computer

programming language as a separate unique

subset. That is, when words of this

subset programmirg language are encoun-

tered, the machine has to use a special

set of states and paths that is only used

to accept these unique words. In effect,

the machine contains a separate acceptor

for the computer programming language.

Since Harrison has proven several computer

programming languages not to be context-

free (96:219-221), then, in general, this

separate acceptor must be more powerful

than a nondeterministic, finite machine

. with a single pushdown-store, in order to

accept the words of the programming

language (9:43). Hence, the overall

machine accepting the entire knowledge-

language must be more powerful than this

machine-type as well.

Finally, since this knowledge-language

has to be accepted as part of the overall

• -.. representation language, the disjoint
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property of the subset computer program-

ming language also forces the machine

accepting the overall representation to be

more powerful than a type-2 acceptor.

Hence, in general, these top-category

production-rule and semantic-network

representation languages cannot be type 2.

Q.E.D.

The finding of Proposition 8.01 has to be general

because only several but not all computer programming

languages have been evaluated. However, there is another

case that can support the general nature of the finding. It

may be the case that only certain types of procedures are

allowed. Then, the entire computer programming language may

not be a subset language. For these cases, the trace

language techniques would have to be used to make the

determination (88). But, knowing that the top-category

languages have a good chance of being type 1 or type 0

indicates that the detailed formal language analysis of the

top-category representations can become very complex.

Even the general finding of Proposition 8.01 still

points out once again that a representation's structure

alone does not control the final language-type. The form

that the knowledge-language itself takes (procedural vs.

declarative), greatly affects the final language equivalent

of the specific representation. With this lower bound of

type-i languages established for the general case, the
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investigation now shifts from the individual languages to

the classes of languages formed at higher category levels.

Proposition 8.02: Given that Conjectures 8.01 and 8.02 are

true, then the entire class of production-

rule languages and the entire class of

semantic-network languages formed at any

of their respective category levels (see

Section IV) is not closed under the union

operation.

Proof: This proof follows by construction of a

counter-example. For the production-rule

representation, select the same two finite

languages that were used in the proof of

Theorem 5.15 of Section V. For the

semantic-network representation select the

same two finite languages that were used

in the proof of Theorem 6.17 of Section

VI.

Now, consider the entire category-I

set of rule (network) languages first.

Since each of the special classes of

category-i languages consists of all the

possible category-i finite languages for a

given representation, it follows from

Theorem 5.15 (Theorem 6.17) that the third

finite language resulting from the union

of two previously selected finite rule
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(network) languages cannot be contained in

any of the remaining classes of category-i

rule (network) languages. Because this

third finite language is not a finite rule

(network) language, it follows that the

the entire set of all category-i

production-rule (semantic-network)

languages is not closed under union.

* Next, consider the remaining category,-

levels of classes of rule and network

languages. The inclusion hierarchy

property (see Section IV) requires that

every rule (network) language contain a

subset of words which have category-i

characteristics. Conjectures 8.01 (8.02)

requires that this subset be a formal

language. Because of these requirements,

there exist in every class of higher

category-level rule (network) languages at

least two separate languages that contain,

as a subset, one of the two specific

finite category-i rule (network) languages

used in Theorem 5.15 (Theorem 6.17). That

is, there exist two production-rule

(semantic-network) languages in each

category-level class of rule (network)
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languages that contains these finite

subsets as their only category-i language.

Now, perform the union of these two

higher category-level production-rule

(semantic-network) languages. This union

produces a third set of rule (network)

words that contains the third finite rule

(network) language as the category-i

word-set. However, from the proof of

Theorem 5.15 (Theorem 6.17), the third

finite language is not a production-rule

(semantic-network) language. From the

inclusion hierarchy property and Con-

jectures 8.01 and 8.02, this third higher

category-level rule (network) language

cannot be contained in the higher

category-level class of rule (network)

languages, since it does not contain a

category-i rule (network) language as a

subset. Hence, the entire class of

production-rule (semantic-network)

languages at any category level is not

closed under the union operation. Q.E.D.

The union closure property is not the only property that

these classes of languages do not meet. These languages do

not meet the product closure property.
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Proposition 8.03: Given that Conjectures 8.01 and 8.02 are

true, the entire class of production-rule

languages and the entire class of

semantic-network languages formed at any

of their respective category levels (see

Section IV) are not closed under the

product operation.

Proof: This proof is by construction. The

inclusion hierarchy property (see Section

IV) requires that every representation-

language contain a subset of words which

have category-i characteristics. Con-

jectures 8.01 and 8.02 require that this

subset of words be a formal language.

Because of these requirements, every

higher category-level representation-

language must contain all the words of

some category-i representation-language as

a subset. From Definitions 4.01 and 4.02

of Section IV, the form of the words in

the category-i language subsets are amb

and arb, respectively.

Now, perform the product operation on

any two production-rule (semantic-network)

languages in the same category-level

class. The resulting set of rule

(network) strings contains category-i
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level strings of the form "AlmBIA2mB2"

(AlR2BlAlR3B2). That is, the category-i

rule (network) strings contain multiple m

(relation) symbols (words). There no

longer exist any of the required category-

1 words of the form amb (arb) in the

language. Therefore, from the inclusion

hierarchy property and Conjectures 8.01

and 8.02, the rule (network) language

formed after the product operation cannot

be contained in the entire class of

,. production-rule (semantic-network)

languages at that category level. Hence,

the entire class of production-rule

(semantic-network) languages at any

category level is not closed under the

product operation.

Q.E.D.

The fact that no entire class of production-rule or

semantic-network languages is closed under either the union

or product operations at any category level leads to the

last proposition on the individual characteristics of these

classes of languages.

Proposition 8.04: Given that Conjectures 8.01 and 8.02 are

true, then the entire class of

production-rule languages and the entire
" * class of semantic-network languages formed
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at any of their respective category levels

(see Section IV) are not Abstract Families

of Languages (AFL) (24).

Proof: From reference 24, an Abstract Family of

Languages (AFL) contains languages closed

under six operations: union, product,

Kleene closure, e-free homomorphisms and

intersection with a regular set. From

Propositions 8.02 and 8.03, the entire

class of production-rule (semantic-

network) languages is not closed under

either union or product at any category

level. Therefore. the entire class of

production-rule (semantic-network)

languages at any category level is not an

AFL. Q.E.D.

As was the case for similar findings on the special

classes of category-i rule and network languages, the

results of Proposition 8.04 present a major stumbling block

to the study of these entire classes of production-rule and

semantic-network languages. Since these classes are not

AFLs, the determination of additional characteristics of

these classes has to involve analysis of the entire set of

languages contained in each class. With all the various

combinations of possible languages, each category level can

contain countably infinite classes each of which contains

countably infinite languages. With the loss of the
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multitude of characteristics proved about AFLs by formal

language theorists, developing a small subset of additional

characteristics for these classes of representations can be

very time consuming. From Godel's theorem (89), it may be

the case that all the language characteristics of these two

representations can never be determined.

Even if this is the case, there are still additional

characteristics about these hierarchical classes of

languages that deserve further attention. One of these

characteristics is the equivalence between a top-category

production-rule language and a top-category semantic-network

language.
'.

Hierarchical Equivalences

A detailed review of the equivalence theorems of Section

VII, shows that the reason that equivalence exists between

certain production-rule and semantic-network languages is

that isomorphic fact and node-label sets could be con-

structed and the bijective Rl=m/m=Rl mapping could be used.

-These isomorphic mappings are possible because the needed

detailed descriptions of the facts, node-label and relation

sets are provided in the category-i definitions of Section

IV (see Definitions 4.01 and 4.02). For the higher level

cases, these detailed definitions have not been provided.

Because these detailed definitions have not been and may

never be (see Section IX for discussion) sufficiently

developed, an additional conjecture is needed to be able to
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.:. determine the equivalence between higher category-level rule

and network languages. From the detailed literature review

performed to develop the tables in Section IV, the descrip-

tions of the antecedents/consequents (facts), node-labels

and relations appear to agree, in general, at various

levels. For example, both the rule's antecedents/

consequents and the network's node labels can contain

procedure calls, free variables, etc. However, these

equivalent descriptions do not necessarily occur at the same'

category level number in both representations.

But, if all the characteristics are considered (i.e. the

top-category definition), then all the production-rule's

characteristics appear to have general agreement with some

of the semantic-network's characteristics. The word "some"

is used because it appears that a few of the network's

characteristics do not have a direct rule equivalent. For

example, the network's exception-links do not directly match

any of the rule's characteristics.

*. Because this equivalence of characteristics appears to

be complete for the rules, the conjecture used in this

dissertation is that all of the top-category rule-

characteristics are indeed equivalent to some of the top-

category network-characteristics. A formal definition of

this conjecture follows. Section IX contains further

discussion on resolving this conjecture so that the follow-

ing propositions involving it may be converted into
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theorems. Section X contains suggestions on how to develop

special cases that support this conjecture.

Conjecture 8.03: All of the general descriptions for the

production-rule characteristics given in

Tables II and III of Section IV are

0 identical to some of the general descrip-

tions for the semantic-network character-

istics given in Tables :V, V and VI of

Section IV.

With this third conjecture, the equivalence of the
4l'.

production-rule and semantic-network language can now be

determined. The equivalence investigation begins by

determining the equivalence of the single top-category rule

and network language that consists of all possible words.

Proposition 8.05: Given that Conjectures 8.01, 8.02 and 8.03

are true, then the single top-category

production-rule language consisting of all

the possible rule-words is not equivalent

to the single top-category semantic-

network language consisting of all the

possible network-words.

Proof: This proof follows from a category-i

equivalence theorem, the inclusion

hierarchy property of Section IV and

.4."44 Conjectures 8.01, 8.02 and 8.03. Because

this theorem requires the top-category

languages to consist of all words, it
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follows from the inclusion hierarchy

.5 property and Conjectures 8.01 and 8.02,

that each of these top-category languages

must contain the entire set of their

respective category-i representation-words

:* as a subset category-1 language. These

special all-inclusive category-i word-sets

were evaluated in Sections V, VI and VII

as the PR production-rule language and the

SN semantic-network language. From these

evaluations of PR and Sn,Theorem 7.03 of

dSection VII established that PR is not

equivalent to SN because SN contains more

words than PR.

Excluding the PR and SN subsets for

the moment, by Conjecture 8.03, the

remaining words in the top-category

production-rule language are equivalent to

some of the remaining words in the top-

category semantic-network language. That

is, because the characteristics in the

tables of Section IV are incorporated as

words in these representation languages,

some of the remaining semantic-network

words must be equivalent to those in the

remaining set of production-rule words.

Jove.

197

-p.~V~ %.,,-,5,C ,? 0++



However, there are more remaining network-

words than rule-words.

Since both the SN subset and the

remaining semantic-network words outnumber

the PR subset and remaining rule-words,

the top-category all-inclusive rule-

language cannot be equivalent to the

top-category all-inclusive semantic-

network language. Q.E.D.

Even though the single top-category languages are not

*equivalent, various subsets of top-category level rule and

network languages can be shown to exist that are and are not

equivalent to each other. Because of the fact that the

characteristics at a specific lower category-level of

rule-languages do not match the semantic-network character-

istics at the same category-level number, these subsets of

languages can only be proven to exist at the top category.

While proving that these subsets exist provides additional

information about the top-category languages, all of these

subsets are not needed to prove the final equivalence

proposition. If needed, the reader can prove that these

subsets exist by using the proof technique used in the

following proposition and substituting the specific

category-i theorem from Section VII for Theorem 7.06. For

example, by substituting Theorem 7.05 for Theorem 7.06, a

set of countably infinite top-category network-languages can
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be proven to exist that are not equivalent to any

production-rule language.

Proposition 8.06: Given that Conjectures 8.01, 8.02 and 8.03

are true, then the entire class of top-

category production-rule languages is not

equivalent to the entire class of top-

category semantic-network languages.

Proof: This theorem follows from Theorem 7.06 of

Section VII, the inclusion hierarchy

property of Section IV and the three given

conjectures. Theorem 7.06 of Section VII

established that the special classes of

category-i production-rule and semantic-

network languages are not equivalent (see

Theorem 5.13 of Section V and Theorem 6.15

of Section VI for class definitions). This

theorem was proved by showing that there

exist both finite and countably infinite

semantic-network languages that contain

more words than any finite or countably

infinite production-rule language. This

proposition can be proven using this same

unequal-size characteristic.

First, the inclusion hierarchy

property requires that every

representation-language contains a subset

of words which have category-I character-
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istics. Conjectures 8.01 and 8.02 require

that this subset of words be a formal

language. Because of these requirements,

there exist top-category rule and network

languages that contain all the words of

one of their respective category-I lan-

guages as a subset. That is, each one of

the top-category languages must contain a

category-i language as a subset. Since

the languages contained in these special

classes of category-i languages qualify as

one of these subset languages, there must

exist at least one top-category language

for every one of these special category-I

languages. Because of the large number of

word-sets that can have higher category-

level characteristics, more than one

top-category language can exist that

contains the same special category-i

language as a subset. However, the

maximum number of such languages is

bounded at countably infinite by the

language-space bound and Theorem 3.05 of

Section III.

For the moment, exclude these special

category-i subsets from the the top-

category languages. By Conjecture 8.03
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. and the fact that each of these top-

category rule and network languages have

to contain all possible representation-

words given a particular knowledge-

language, there must exist network-

languages whose number of remaining words

Nexceeds the number of words remaining for

any rule-language. That is, because the

characteristics in the tables of Section

IV are incorporated as knowledge-words in

a representation-language, the "some"

stipulation of Conjecture 8.03 means that

more knowledge-words exist for the

semantic-network languages. Therefore,

some semantic-network languages will

contain more higher category-level words

than any rule-language.

Finally, recombine these remaining

subsets of higher category-level words

with the special category-i language

subsets. Then, it follows from the

unequal sizes of the special category-i

languages and the unequal sizes of these

higher category-level word-subsets that

there must exist certain top-category

network-languages that contain more words

S"than any production-rule language. Hence,
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the entire class of top-category

production-rule languages cannot be

equivalent to the entire class of top-

category semantic-network languages.

Q .E .D.

Proposition 8.06 could have been proven directly from

Proposition 8.05 by showing the inclusion of the single

all-inclusive languages in the top-category classes.

However, by using this proof technique, it is revealed that

more than one case exists where languages are not equiva-

lent. This existence was shown without having to develop

equivalent propositions for all of the special-case theorems

of Section VII (e.g. Theorem 7.05). Further impacts of this

finding are discussed in Section IX. Section X contains

*suggestions for knowledge representation researchers to

follow when dealing with equivalence issues.

Even though these top-category classes of knowledge

representations are not equivalent, transformation from a

top-category production-rule language to a top-category

semantic-network language can be made.

Hierarchical Transformations

As was the case in Section VII, there are two types of

transformations that need to be considered: rule-to-network

and network-to-rule. The rule-to-network is investigated

first.
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As previously indicated, the top-category

production-rule to top-category semantic-network language

transformation does exist. Because the characteristics of

the rules at the individual category levels do not match the

characteristics of the networks at the same category-level

number, the transformation can only be proven to exist for

the top category. Also, because the definitions of the

characteristics are not provided, detailed definition of the

transformation steps cannot be given. However, if Conjec-

ture 8.03 is true, then the transformation for the

characteristics does exist. By assuming Conjecture 8.03 is

true, the following proposition regarding this rule-to-

network transformation is proven.

Proposition 8.07: Given that Conjectures 8.01, 8.02 and 8.03

are true, then any top-category

production-rule language can be trans-

formed into an equivalent semantic-network

language.

Proof: This proof follows directly from

Theorem 7.07 of Section VII, the hierarchy

inclusion property of Section IV and the

three given conjectures. By the inclusion

hierarchy and Conjectures 8.01 and 8.02,

* various category-i languages exist as

subsets of the top-category

representation-languages. However,

the words in these subset languages all
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come from the category-i word-set.

Theorem 7.07 established that an equiva-

lent rule-to-network transformation was

possible for the special classes of

category-i languages (see Theorem 5.13 of

Section V and Theorem 6.15 of Section VI

for class definitions). Since the set of

all category-i words is included in these

special classes (PR and SN), the transfor-

mation of Theorem 7.07 of Section VII can

be used to transform all the category-I

words. Therefore, the transformation

given in Theorem 7.07 becomes a subset of

the overall top-category rule-to-network

transformation.

To handle the remaining words in the

top-category rule-languages, Conjecture

8.03 must be invoked to establish that

every top-category production-rule char-

acteristic has an equivalent form in the

set of semantic-network characteristics.

That is, a transformation exists for the

rule-words incorporating these charac-

teristics into equivalent semantic-network

words that incorporates these same char-

acteristics. Therefore, by combining the

category-i transformation with the trans-
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formation for these equivalent charac-
teristics, any top-category production-

rule language can be transformed into an

equivalent semantic-network language.

Q.E .D.

While this production-rule to semantic-network transfor-

mation relies almost entirely on the acceptance of a

conjecture, the nonexistence a single semantic-network to

production-rule transformation can be proven from the

category-1 results.

Proposition 8.08: Given that Conjectures 8.01, 8.02 and 8.03

are true, then there does not exist a

single information-lossless transformation

that converts an arbitrary top-category

semantic-network language into a top-

category production-rule language.

Proof: This proof follows directly from

Theorem 7.08 of Section VII, the inclusion

hierarchy property of Section IV and the

three given conjectures. Theorem 7.08

proved that no information-lossless

transformation exists for the special

classes of category-i languages (see

Theorem 5.13 and Theorem 6.15 for class

definitions). The reason was that the

transformed rule-grammar would generate

category-i rule-words that have no
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relation to the original semantic network.

Hence, any special category-i network-

to-rule transformation would result in a

set of rule-words that was not a proper

production-rule language.

While Theorem 7.07 only dealt with a

special class of category-i languages,

the results actually hold for any

category-i language. The problem with the

transform involved the internal words of

the category-I representation-words.

Since all category-i words have the same

form and meet the a~b constraint, any

AUA category-i production-rule grammar will,

in general, still generate rule-words that

contain the same node label on both sides

of the m symbol. Hence, the violation of

the a~b constraint on the network-words

still occurs.

Recognizing that this violation holds

for all category-i languages, consider the

top-category languages. From the inclu-

sion hierarchy property and Conjectures

* 8.01 and 8.02, it follows that each of the

top-category languages is formed by adding

more words to some category-i language.

* That is, every top-category production-
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rule language and every top-category

semantic-network language contains all the

words of a category-i language as a

subset. Hence, any top-category network-

to-rule transformation has to transform

the category-1 network-language into a set

of rule-words.

Now, consider the only three forms

that this transformation of the category-i

subset language can take. The first form

involves transforming all the category-1

network-words into higher category-level

rule-words. That is, the resulting set of

rule-words does not contain any category-i

words. This transformation is illegal

because, from Conjectures 8.01 and 8.02,

the production-rule language has to

contain a nonempty subset of category-1

words.

The second form involves transforming

the category-i network-language into a

*category-i rule-language. This is also

illegal, in general, from the previously

mentioned expansion of the results of

Theorem 7.07 to include the entire set of

category-I languages.
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The third form involves transforming

part of the category-i semantic-network

words into higher category-level rule-

*words and the remaining category-i

network-words into category-i rule-words.

There are two conditions on the form of

this transformation that have to be

consid ered• The first condition is that

the resulting set of category-i rule-words

is not a complete production-rule lan-

guage. For this condition, the transfor-

mation is illegal since the rule-language

must contain all the words of a complete

category-i rule-language as a subset.

The second condition is that the

resulting set of category-i rule-words

does form a category-i rule-language.

This transformation is also illegal. This

is because the transformation results in

mapping some of the knowledge-words (see

Definitions 4.03 and 4.04 of Section IV)

contained in the overall category-i

network-language, into two knowledge-words

contained in the knowledge-language for

the overall rule-representation. These

two knowledge-words are actually at

different category levels of definition.
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,70' In effect, the resulting rule-language has

added characteristics to the semantic-

network knowledge-words that did not

V originally exist. That is, the rule-

language has gained knowledge. For

example, the category-i relation/node-

Klabel association R2C transforms into a

category-I fact-word, R2C, and a

predicate-word "R2C(x,x)."

4. To understand why this problem occurs,4.

the semantic-network relation/node-label

cycle needs to be reviewed. No matter how

the category-i network-language subset is

partitioned, the network-cycle CR2D/DR2C

- t forces some node-labels and/or relations

to be duplicated in both partitions. For

these duplicated knowledge-words, the

information-lossless requirement forces

4. this transformation to convert these words

into an equivalent category-i knowledge-

word and some higher category-level

knowledge-word. Hence, the original

category-i network-words are transformed

into two different category-level words.

To better understand how this effect-

ively adds a characteristic to the

...".'.. semantic-network language, consider the
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previous example's knowledge-words R2C and

R2C(x,x). Make use of the fact that a

rule-to-network transformation exists and

transform these equivalent knowledge-words

back into their network word-forms.

Because the node label and relation words

are over disjoint alphabets, let the

rule-to-network transformation use a

relation/node-label separator to retrieve

the node labels and relations. Using this

rule-to-network transformation, it then

follows from Proposition 8.07 that the

category-i word R2C transforms into node

labels for the network. Applying the

separator, the actual node label and

relation words can be obtained. Hence,

R2C transforms into R2 and C.

However, for the R2C(x,x) knowledge-

word, it follows from Conjecture 8.03 and

Section IV that network-words exist whose

node labels can contain predicates.

Depending on the definition of n-ary

relations, the relation-set may also

contain predicates. Therefore, applying

the transformation steps for these

predicate-words and the separator, a new

-"." predicate node-label "C(x,x)" and a new
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. .predicate relation "R2(x,x)" are added to

the network that did not originally exist.

Now, it may be argued that these

R2C(x,x) words are syntactically different

from R2C words and could be identified and

mapped so that no extra words are added to

the network. While this depends on

whether or not the R2C(x,x) words form a

language by themselves (it takes a Turing

acceptor to identify these words), the

point is that the production system using

this equivalent production-rule knowledge

representation may reach conclusions that

could never be reached by the original

network-system. The added characteristics

*' actually reside inside the production-rule

representation.

Since all the possible transformation-

forms have been shown to be illegal for

the general case, it follows that no

single information-lossless transformation

exists that will transform an arbitrary
".,

top-category semantic-network language

into a top-category production-rule

language. Q.E.D.

The finding of Proposition 8.08 may be hard for some

people to accept. In one case, there are those who may
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argue that embedded procedures can be used to handle the

problems of the transformation. This type of statement can

be seen to be incorrect by realizing that a transformat .on

is nothing more than a procedure itself. Since a single one

does not exist, the embedded procedure-calls can only work

for a limited number of cases (if any).

In another case, there are those who may argue that the

hierarchical approach is not the only way to define a

representation's characteristics. Using other definition

approaches, the inclusion constraint can be removed from the

proof of Proposition 8.08 and a transform may be able to be

found. This argument has merit in that special cases may be

found where a transformation does exist (see Theorems 7.02

and 7.05). However, this transformation is good for only

that special case or some special subset of cases. As soon

as their languages contain all of the characteristics of

Section IV (if this is assumed to be a complete list), then

they always have other language versions where the transform

does not work (e.g. the top-category languages of

Proposition 8.08). Because of the countably infinite

variations possible, every special-case transformation has

to be proven to operate correctly on the specific class of

languages before it can be used in a application.

While other arguments may exist, the findings of this

section still remain sound under some of the more severe

complaints. Because they are sound, no further analyses of

these hierarchies of representation-languages are performed
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in this dissertation. Therefore, this concludes the formal

analysis of production-rule and semantic-network languages.

However, there are some important conclusions that can be

reached regarding the affects that the findings of Sections

V-VIII have on the field of Artificial Intelligence

Knowledge Representation.

.1
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IX. Conclusions and Discussion

Conclusions

The analyses of production rules and semantic networks

via formal language theory provide conclusions that affect

the knowledge representations. The first conclusion is that

both the knowledge-language (see Definitions 4.03 and 4.04

of Section IV) and the representation's structure must

always be included during formal language analyses of

knowledge representations. The rationale for this

conclusion follows.

Theorems 5.01 through 5.06 and 6.01 through 6.06 of

Sections V and VI, respectively, revealed that even though

the knowledge-language is a regular set, the constraints of

the representation's structure causes the final language not

to be regular. On the other hand, if the knowledge-language

type is ignored as in Theorems 5.07, 5.08 and Theorems 6.07,

6.08 of Section V and VI, respectively, the overall set of

representation-words fails to include formal words. So, no

formal language versions exist for these types of knowledge

representations.

Even when these types *of representations are forced to

be languages (see Theorem 5.12 of Section V and Theorem 6.14

of Section VI), the resulting finite languages are unable to

handle all the possible representation-words. Haines even

r .. . ' conjectured that his type-2 language finding for his
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*' centermarker-languages depends on the regular set constraint

of the language used for the x's and y's in his "xcy" words

(98). Therefore, the representation's structure and

knowledge-language must be considered together when

evaluating knowledge representations.

Another conclusion is that for either a production-rule

or semantic-network representation, no single support-tool

can be designed to handle all possible knowledge-languages.

This conclusion has considerable impacts on the selection of

knowledge-base support-tools, especially in regards to

present manufacturers' claims of having developed generic

representation support-tools (101). This conclusion is

justified in a straightforward manner.

. Because knowledge representation researchers cannot

agree on any single definition of knowledge (84), the number

of the possible knowledge-languages cannot be purposely

restricted. This is also true for the number of the result-

ing overall knowledge representation languages. For exam-

ple, recalling fiom Section IV that predicates are allowable

knowledge-words (see Definitions 4.03 and 4.04 of Section

IV), the set of knowledge-languages could be selected to be

the finite set of predicate calculus languages given by

Manna (9:Chapter 2). It follows from the language-space

bound and set theory that there still exists a countably

infinite set of potential knowledge-languages that are not

contained within this predicate calculus language set.
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. Even recognizing this need to account for all possible

knowledge-languages, the manufacturer constructing a support

tool for representations is only able to select a finite

number of knowledge-languages for the tool to handle. From

set theory, this still leaves a countably infinite number of

possible knowledge languages that cannot be accommodated.

The finite set criterion comes from the fact that no known

physical machine can store and search for a countably infi-

nite set of language acceptance/generation rules. Hence, no

single tool exists that can support acceptance/generation of

a production-rule or semantic-network knowledge representa-

tion for all possible knowledge-languages.

While the evidence developed in this dissertation

supports the nonexistence of this general support tool, it

appears to be countered by the existence of support tools

that are proposed to handle any knowledge-language (101).

It is important to notice that these types of tools only aid

in the construction of a syntax representation from user

supplied knowledge-words. The manufacturers of these tools

have left it up to the user to ensure that the knowledge-

words input are members of the particular knowledge-language

of interest. Because of the possibility that a particular

knowledge-language contains a countably infinite number of

words, a machine that accepts this knowledge-language is

needed to perform the missing acceptance test for the user.

So, while these representation support-tools can handle any

knowledge-language, the manufacturers are really misleading
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- - the users into thinking that only one tool is required to

support a given representation. However, a countably

infinite set of additional language-acceptors are actually

needed to accept all knowledge-languages.

Support tools for construction of knowledge representa-

tions are not the only type of tools affected by the find-

ings of this investigation. Based on these findings, an

additional conclusion is that by using either the

production-rule or semantic-network representation as the

main data structure, no single automatic-programming tool

can be designed that handles all the possible knowledge-

languages. In order to understand the justification for

this conclusion, a partial description of automatic-

programming tools that use knowledge representations is

presented first.

Automatic-programming tools make use of a (natural)

language parser to extract the necessary data and algorithm

information from a specified text (102). For the data

information case, the automatic-programming tool also

selects data structures to store the data information that

was parsed. If these structures are knowledge representa-

tions, then the data extracted by the parser are the

knowledge-words. Since a parser can only handle the "sen-

tences" of one language, the knowledge-words extracted must

come from a single knowledge-language contained within the

parent text-language. Because a physical machine can only

store and execute a finite number of parsers, it then
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follows that a given automatic-programming tool can only

parse a finite number of parent text-languages.

With this understanding of the tool, the justification

for the conclusion now can be presented. From Section III,

there exists a countably infinite number of possible lan-

*guages. Contained in this set are the parent text-languages

that automatic-programming tools can handle. From the

category-! findings alone, there are at least a countably

infinite number of unique knowledge-languages (the regular

finite sets). So, there is at least a countably infinite

number of possible parent text-languages. Since an

automatic-programming tool can only parse a finite number of

the countably infinite text-languages, it then follows that

no automatic-programming tool can be designed to handle all

the possible knowledge-languages.

The previous conclusions concerning support-tools and

automatic-programming tools seems to indicate limitations on

the applicability of such tools. However, this is not

necessarily the case. Any physical machine requires that

the implementable version of a knowledge representation

contain a finite number of words. For the cases where the

knowledge-language contains countably infinite words, there

exists a countably infinite number of unique, finite subsets

of words (see Theorem 3.10 of Section III). Hence, any

support/automatic-programming tool that uses a knowledge-

language of countably infinite cardinality can generate a

* "* countably infinite number of implementable knowledge repre-
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sentations. For the case in which the knowledge-language is

some natural language, these implementation versions alone

may be sufficient.

Since each implementable knowledge representation

contains a finite number of words, a conclusion regarding a

finite centralized database of knowledge can be stated. The

conclusion is that for a finite centralized database, the

semantic-network structure is a viable candidate for the

storage-form. As will be shown later, the finite restric-

tion comes from the search required to transform a portion

of the semantic network into production rules. The term

"viable" is used in the conclusion because the semantic

network is a specialized case of the frame representation

system (see Sections I and II). Without analysis of frames,

no final selection of a structure should be made. Before

presenting the justification for this conclusion, a short

description of the concept of a centralized database is

presented.

The concept of a centralized database of knowledge is to

store and maintain all knowledge-words of a given knowledge-

language in a single representation. Then, when needed, the

knowledge representation in the database is transformed into

the knowledge representation required for a given applica-

tion. Since implementable knowledge representations contain

a finite number of words, the finite database is capable of

storing implementable versions.
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-: -With this conceptual understanding of a centralized

database of knowledge, the justification for this conclusion

can now be presented. This conclusion is justified from

Theorem 7.07 of Section VII and Propositions 8.05 and 8.07

of Section VIII. From Theorem 7.07, every production-rule

language in the special class of category-I languages (see

Theorem 5.15 for class definition) can be transformed into

an equivalent semantic-network language. It is important to

notice that the transformation algorithm only uses one

semantic-network relation. Thus, the semantic-network

language that is produced by transforming any of these

production-rule languages is a proper subset of a semantic-

network language that contains more than one relation.

Using this subset property, the hierarchy inclusion

property of Section IV and Propositions 8.05 and 8.07, it

follows that any production-rule language can be transformed

into an equivalent semantic-network language. This language

is a subset of the all-inclusive top-category semantic-

* network language. So, any production-rule language can be

explicitly stored within this top-category semantic-network

language. The reverse transformation (i.e. generating the

production rules) is where the finite size constraint

becomes important.

To obtain a production-rule language from this top-

category semantic-network language, the algorithm of Prop-

osition 8.07 is applied in reverse to a special subset of

semantic-network words. This subset of words is found by
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,. locating all of the semantic-network words where the implies

,'_ relation exists or where the bijective mapping Rl=m/m=Rl is

. allowed. Because this is a search process, the semantic
I.%

network has to be finite otherwise the search may never

terminate. Since the subset of words obtained by this

search is also finite, the production-rule language result-

ing from the reverse transformation of Proposition 8.07 is

also finite.

Even though this reverse transformation can be used to

obtain some finite production-rule languages from a finite

semantic-network oriented database, it can be argued that

the finite constraint limits the usefulness of the central-

ized database. That is, no single, finite, representation-

language can contain all the knowledge-words for countably

infinite knowledge-languages. While the argument is valid,

the physical constraints of finite memory require a finite-

size constraint on any database. The key is to recognize

that the transformation algorithm does not depend specif-

ically on the knowledge-language. It only depends on being

able to use equivalent knowledge-languages for both repre-

sentations. Therefore, as the finite number of words in the

*knowledge-language increases, the same algorithm can still

be applied to obtain the rule-languages. This results in

[-7 fewer modifications being made to the database-handling

routines as the knowledge increases.

hHowever, the concept of the centralized database is to

* store knowledge in a single form so that only one form has
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to be maintained. The application versions used in

knowledge-bases (see Figure 4) are generated from that form.

The centralized database itself does not have to be an

application version. But, it has to be able to be trans-

formable into application versions. The key is that while

in the semantic-network form, maintenance actions on the
-."

database can be performed and validated by using a limited

set of proven algorithms. Hence, a set of maintenance

algorithms for every representation-form does not have to be

verified. The verification of algorithms can be very

difficult (9).

While a semantic-network form is a viable candidate for
J.

a centralized database, it is concluded that a production-

rule form is not an acceptable candidate. This conclusion

follows from the fact that, in general, production rules do

not contain sufficient numbers of words to store a semantic

network.

To understand why production rules cannot store a

semantic network, the equivalence and transformation char-

acteristics of the category-i languages need to be reviewed

(see Section VII). The PR and SN languages are not equiva-

lent because SN contains more words than PR. In order to

store these remaining semantic-network words in a

production-rule form, the fact-words in the rule-set would

have to involve some form of relation-word mappings.

However, the proof of the nonexistence of a single

"" network-to-rule transformation (Theorem 7.08 of Section VII)
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revealed that problems exist when using relation-words in
I,

the fact-set. In this transformation proof, by using

fact-words containing relation-words, the resulting

production-rule language was shown actually to contain

rule-words that have no semantic-network word counterparts.

That is, when applying the transformation of Theorem 7.07 of

Section VII on a production-rule language modified to

contain relations, illegal semantic-network words are

produced. Since Proposition 8.08 of Section VIII indicated

the same transformation problem exists for any category-

level of languages, it follows that the production-rule

structure cannot be used as the only storage-structure in a

centralized database.

Discussion

The formal language findings contained herein may affect

human modeling. As pointed out in Section VIII, the exact

language-type of the top-category production-rule and

semantic-network languages remains open. This open problem

was observed to stem from the inability of the knowledge

representation researchers to agree on the characteristics

of a human knowledge-model (84). It may be the case that

these disagreements can never be resolved.

This conjecture comes from the proposition that humans

can only be proven to be a formal system from a meta-level

that humans cannot directly observe (see the syntax/semantic

level discussion in Section I and the meta-level discussions
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of Hofstadter (89)). That is, humans would have to leave

their present level of awareness in order to be able to

describe the form of knowledge that they use. Recognizing

the impossibility of this task, the meta-level theory leads

to the conjecture that there can never be a formal descrip-

tion of knowledge that can be used to finish the hierarchi-

cal language-development. Therefore, the language-typing

problem as well as the human storage-model issue could

remain unsolved for all time.

This meta-level conjecture is not the only reason that

the language-typing problem could remain open. Godel

established that it is not possible to prove all truths

about any formal system equivalent to or more complicated

than arithmetic (89). Because languages are members of a

formal system and it takes a Turing machine to generate the

type-0 languages as well as solutions to arithmetic prob-

lems, Godel's theorem yields the possibility that no formal

language versions can ever be proven to exist for the

remaining languages in the hierarchy. Hence, the language-

typing problem would remain open.

This language-typing problem not only exists for the two

knowledge representations analyzed herein, but also exists

for all forms of knowledge representations. That is, those

proponents of natural knowledge representations (103),

hierarchical cortical plane knowledge representations (104),

combined knowledge representations (see Section I), etc.,

all have to face a similar open language-typing problem
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associated with their representation-forms. This is due to

the fact that no matter how complex their representations

are, each of their representations has to have a formal

language equivalent.

The reason all these knowledge representations must have

a formal language equivalent comes from the work of Chomsky,

Turing, and others (8; 89; Section III references; Appendix

D references). They proved that computers can only accept,

generate, or accept and generate formal languages. Since

all of these knowledge representations are eventually

implemented on a computer system and used as input data (the

language being accepted) for a computer algorithm, it
.%

follows that they must be formal languages.

However, because the proponents of all of these knowl-

edge representations do not have a widely accepted defini-

tion of their representations, any formal language analysis

of these representations would eventually reach the same

language-definition plateau as was reached in this disser-

tation. Once again, Godel's theorem and/or the meta-level

conjecture would force the open language-typing problem to

show up for each of the knowledge representations.

Not only does the potential exist for this language-

typing problem to remain open for all knowledge representa-

tions, the potential also exists that a complete human

computer-model will never be found. As was the case for the

knowledge representations, any human model will be imple-

mented on a computer. Since computers only accept/generate

225



formal languages, they are a form of a formal system.

-- Godel's theorem can then be applied to the model's output

language to reach the conclusion that it is possible that no

Lx' human computer-model can ever be proven to represent the

true human being. In the worst case, the meta-level con-

jecture can be applied to reach the conclusion that no true

human computer-model will ever be found.

Even though all of these conclusions appear to complete

the formal language analysis on knowledge representation,

there are still recommendations that can be made for

additional work.

42.
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X. Recommendations and Closing

Recommendat ions

With the success that was achieved by applying formal

language techniques to the production-rule and semantic-

network knowledge representations, there are several recom-

mendations that can be made. One recommendation is to

continue to apply formal language theory techniques to the

special classes of category-i production-rule and semantic-

network languages (see Theorem 5.13 of Section V and Theorem

6.15 of Section VI for class definitions), to determine if

other special characteristics exist for these languages over

and above those known for type-2 languages. By recognizing

the existence of these special characteristics, other

general conclusions about the top-category knowledge repre-

sentations may be found. For example, while type-2 lan-

guages are closed under union and product, proofs were

provided in Sections V and VI that these special classes of

category-i languages are not closed under either union or

product operations. As a result, these special classes of

category-i languages as well as the classes of top-category

languages were proven not to be an Abstract Family of

Languages (AFL) (24). This finding prevented the appli-

cation of the well published characteristics of AFLs to

these knowledge representations.

2.-
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1'.t * Another recommendation is to investigate the charac-

_' teristics of each of the special classes of category-i

production-rule and semantic-network languages formed when

-[ the knowledge-language (see Definitions 4.03 and 4.04 of

- Section IV) is one of three other language-types: type 0,

type 1 and type 2 (8). This dissertation only covered the

category-i languages formed from a type-3 knowledge-

language. Since Haines conjectured that his type 2 finding

-' for his centermarker-languages depended on the regular set

membership of his equivalent knowledge-language (98), a

different language classification may be found for these

representations when using these other types of knowledge-

languages. By remaining at the category-i level, the

complexities of the higher category-level knowledge-words

(see Definition 4.03 and 4.04 of Section IV) can be avoided.

This should make the task of determining the language-type

-of the related representation-languages somewhat easier.

A more general recommendation is to apply the formal

language techniques of this dissertation to the other forms

of knowledge representations. By using the inclusion-

hierarchy definition-approach, basic formal knowledge can be

gained about the other representations even though the

language-typing problem for the top-category languages

remains open for them. This new information combined with

that of this dissertation can be used to establish founda-

tions from which new knowledge-representation forms can be

developed for specific applications. While this
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recommendation is to study all knowledge representations, a
V

specific knowledge representation should be evaluated first.

The specific representation is the frame. In Section

IX, it is concluded that a semantic-network form could be

used as the storage-structure for a centralized database.

However, because the network is a special case of a frame

,oA representation (the network-hierarchy is contained as a

subset of the frame-hierarchy, see Sections I and II), it

may be the case that a frame is the best storage-structure

for a centralized database. Of course, there are still a
p-"

lot of other knowledge representation forms that need to be

evaluated before a final selection of the storage-structure

can be made. But, by resolving the storage-structure issue

* for the frame first, a large majority of knowledge represen-

tations used in existing expert systems may be able to be

-" -consolidated into one standard database.

While this recommendation involved other

representation-forms, another recommendation that can be

made involves the rule and network language-hierarchies (see

Section IV). The recommendation is to provide a special-

case definition for all of the characteristics of rules and

networks given in Section IV. Then, using the same tech-

niques given in Sections V-VIII, complete the formal

analysis for these special language-hierarchies. If these

special-case definitions could be made so that differences

could be traced (e.g. the number of nested statements is

-. "N"), then more than one special-case definition will
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actually have been accounted for by this approach. However,

these special-case definitions must be developed so that the

language-type of the specially defined knowledge-language

does not exceed the expected type of a knowledge-language

generated from a more general definition. Otherwise, the

results will not be typical of the more complex knowledge

.-. representations.

Additionally, it is important to notice that the open

language-typing problem applies to both the knowledge-

languages as well as the overall representation-languages.

The specialized definition can only eliminate the existence

portion of the problem. Finding the true language descrip-

tion still remains a risk due to Godel's theorem. However,

if a language version could be found for this special case,

then the conjectures of Section VIII would have additional

concrete basis. This would add credibility to the overall

representation findings of this dissertation without waiting

for the knowledge representation researchers to reach a

consensus on the form of knowledge.

Mentioning knowledge representation researchers brings

to mind several recommendations for them specifically. One

recommendation for these researchers is to provide detailed

supporting proofs when they state that their knowledge

representation is equivalent to others. While the findings

of this dissertation showed that special equivalence cases

exist (see Section VII), the findings also showed that

." complete equivalence of rules and networks does not exist
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(see Proposition 8.06 of Section VIII). By showing that a

production-rule language maps into a semantic-network

language does not prove equivalence of the entire set of

languages. The fact that a reverse map can be used to

retrieve the original rules is not sufficient either. These

researchers need to expand their representation-definitions

in the manner used in this dissertation (see Section IV) to

generate the general class definition for each

representation-form. Then, they can use formal proof

.. techniques similar to those of this dissertation (see

Section VII) on these general classes to truly verify that

class equivalence exists.

Another recommendation for these knowledge representa-

tion researchers is that they prove the correctness of the

transformations they use when transforming from one repre-

sentation to another. The finding of this dissertation that

no single transformation exists for networks-to-rules

supports the need for this added task (see Proposition 8.08

of Section VIII). The methods used in this dissertation

(see Section VII) can be applied to help prove the correct-

ness of specific transformations. However, these special

transformations must not be used to transform a more general

version of a knowledge representation without a similar

generalization being applied in the correctness proofs of

these special transformations. That is, one transformation

.r may be proven correct for a representation containing a

specific subset of knowledge-words, yet all of the
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underlying characteristics of the overall knowledge-language

* 0may not have been taken directly into account in the origi-

nal proof of correctness. Without expanding the proof of

the special transformation to include all the words in the

knowledge-language, representation-words that contain other

knowledge-words could transform incorrectly when using this

same transformation.

For example, let the gerneral knowledge-language consti-

tute a particular finite regular set. Now, let the specific

word-set used to prove the correctness of a given network-

to-rule transformation be a special regular subset of this

general knowledge-language. Since both are regular sets

over the same alphabet, a common mistake is to assume the

same transformation would apply. However, as was shown in

Section VII, some finite semantic-network languages exist

that can never be transformed into a production-rule repre-

sentation. Although, a semantic network formed from a

subset of the knowledge-language can be transformed cor-

rectly. So, using the special transformation on the larger

semantic-network representation would result in an incorrect

production-rule representation being generated.

A further recommendation is that knowledge representa-

tion researchers get with the manufacturers of support tools

and provide users the formal language desc.iption of the

representation(s) that the tool will handle. As indicated

in Section I, expert systems have to be validated for

operational use. Since the knowledge representation used in
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the knowledge-base (see Figure 4) has to be validated during

the expert system's validation, users are faced with

developing validation tests for their particular implementa-

tion of the representation. By using the formal language

description along with their own implementation details,

existing formal language algorithms (e.g. word membership)

can be modified and used to perform validation tests. This

can reduce the time needed to develop these tests.

Closing
While the previous recommendations dealt with ways to

apply, expand upon and improve upon the results of this

dissertation, there is one final suggestion for future

investigations in applying formal language theory to knowl-

edge representations. This suggestion is to expand the

analysis techniques to include computational time and space

complexities. Formal language theory provides some of the

guidelines that can be followed (see the references in

Appendix A). Reference 105 provides other guidance for any

special circumstances that might surface as a result of the

detailed knowledge-word definitions.

This complexity information would be useful for those

who develop support tools for these representations.

Recalling that while this dissertation showed that no single

support or automatic programming tool existed that could

handle all knowledge-languages, there are tools that exist

, -. that support a countably infinite number of specific

233

4



I;

implementation-versions for a given knowledge-language.

Therefore, establishing complexity guidelines for these

manufacturers to follow would result in a standard form of

* comparison among these different systems. That is, there

may be several existing tools that could suffice for a

particular application. However, one tool may be more

efficient in both time and space than any of the others.

This type of information would be invaluable in helping a

user make a final tool selection.

With this last suggestion, the efforts of this disserta-

tion draw to a close. The original goal of providing

formality to the field of knowledge representation has been

met. Even though open problems exist, it is important not

to falsely conclude that formal language theory should not

have been used to study knowledge representations. Godel's

theorem does not say that every truth is unprovable. By

using formal language theory, this dissertation has enhanced

the knowledge about the various representation-forms. The

formality provided by language theory allows objectivity to

be used when reaching conclusions about knowledge represen-

tations. This is needed in light of the many subjective

opinions of knowledge representation researchers (84).

While this dissertation has shown how to add formality

to the knowledge representation field, it also has provided

the foundation for an approach to study general computer

data structures. Knowledge representations are just forms

of abstract data types (3). By applying the same formal
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language theory techniques to general abstract data types,

it should be possible to gain formal knowledge about a wider

variety of computer storage approaches than just

representation-structures. Even though the dissertation

does not provide absolute proof of the applicability of the

approach to all cases, the positive results of this disser-

*tation provide support for this conjecture.

While this dissertation has contributed to the tormality

of both the knowledge representation and the abstract data

type areas of computer science, it has also contributed to

the field of formal language theory itself. The disser-

tation provided the proof of the size of the formal language

(and grammar, see Appendix D) set. Because of the insight

gained from this proof, the complexity of the proofs of new

formal language theorems can be reduced. Additionally, the

dissertation expanded the centermarker-languages of Haines

(98) to include any regular set as the centermarker.

Finally, the dissertation provided examples of formal

p, languages that actually exist outside of the theoretical

environment. As a result, this dissertation provides

support to the position that research on formal languages is

more that just a theoretical curiosity.

QUOD ERAT DEMONSTRANDUM
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Appendix C: Invalid Nonenumerable Set

As part of the work in formal language theory, theorists

search for examples of sets of words that are not recur-

sively enumerable. These examples provide evidence that

Chomsky's hierarchy is a subset of yet a higher set (8:152).

However, theorists sometimes propose such sets only to be

disproven later. One invalid case was found during work on

this dissertation. The case was Manna's construction of a

nonrecursively enumerable set (9:39).

For his construction, Manna chose a two letter alphabet,

Z=fa,b}. By placing the words of Z in lexicographic order,

he could choose the jth word, xj. From a problem in his

text, he stated that every Turing machine could be encoded

as a word in Z . Therefore, he could choose the jth Turing

machine, Tj.

With this notation established, he constructed a set

Ll=[xjlx j is not accepted by Tj). He then stated that Lil

could not be accepted by any Turing machine because the set

always contained a word which a given machine would not

accept. Therefore, Li could not be a recursively enumerable

set.

However, he cannot construct Li as stated for the set

containing every Turing machine. That is, by selecting xj

from Z , there always exists one machine which accepts every

word in Z • Therefore, no xj exists for this machine.
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This conclusion follows from several definitions given

in Section III of this dissertation. From Definition 3.19,

Z is a regular set since Z is a finite, regular set. From

Definition 3.21, the Z regular set is accepted by some

finite automaton (Turing machine). From Definition 3.18 and

the fact that a regular set is a recursive set, this finite

automaton accepts every word in the language and rejects all

others. But, Z -Z = and so all words are accepted.

There are several different arguments that could be used

in an attempt to counter this disagreement with Manna. It

could be argued that Ll could contain the empty set and then

the previously described machine would reject LI. However,

p.. this would violate the definition of the set Li. Li con-

tains words, not sets of words. The empty set is a set, not

a single word. Language theorists added the empty word to

handle this problem. But, Z already contains the empty

word by definition.

Another argument possible is that Li could be the empty

set 0. Then, the previously described machine would not

accept Li. This argument fails because 0 is a regular set.

By Definition 3.21 of Section III, there exists another

4 machine in the set of all Turing machines that accepts .

Therefore, the set Li as constructed by Manna is not a

47 nonrecursively enumerable set.
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Appendix D: Grammar Space

When a set of characteristics for languages are found,

the grammars for those languages are usually studied to

determine if a related set of characteristics exists for

them. As was the case for this dissertation, both the

language-space size and grammar-space size are studied.

Since the findings of the dissertation were not based on

grammar-space size, the main body of the dissertation did

not contain the grammar-space size development. Therefore,

the results of this related effort are presented in this

appendix. In order to remain consistent with the body of

the dissertation, the format that was used to present the

language-space size effort is also used to present the

grammar-space size.

Supporting Definitions and Theorems

In addition to definitions and theorems already provided

in Sections I and III of the main body of this dissertation,

an additional set that relate to recursive function theory

is needed to be able to handle the generative nature of

grammars. In order to provide sufficient information to

understand some of these definitions and theorems, related

ones are also given. However, only the main definitions and

theorems are referred to in the actual proofs.

Also, to remain as consistent as possible with Sections

I and III, the same symbolic notation is used where
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possible. Therefore, Z represents a finite alphabet of
.

symbols and Z represents the set of all finite words.

Definition D.01: A partial function, f(xl,x2,..,xn), n>_l,

mapping n-tuples of words over Z=[a,b} into

words over Z, is said to be Turing comput-

able if there is a Turing machine, M, over

(a,b,*} which behaves as follows. For every

n-tuple (wl,..,wn) of words over Z, M takes

the string (wl*...*wn) as input and

1. If f(wl,...,wn) is undefined, then

*M will loop forever.

2. If f(wl,...,wn) is defined, then M

will eventually halt (either

accepting or rejecting the input)

with a tape containing the value of

f(wl,..,wn) followed only by blank

tape symbols (9:44).

Theorem D.01: A n-ary partial function mapping n-tuples of

words over Z into words over Z is partial

recursive if and only if it is Turing

computable (9:52).

Definition D.02: A partial recursive function that is

defined for all arguments is called a total

recursive function (9:52).

Definition D.03: The class of all primitive recursive

functions over an alphabet Z=fa,b) is

defined as follows (9:45):
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1. Base functions:

nil(x)= e (empty word)

consa(x)= ax

consb(x)= bx

2. Composition:

If h, gl,.., gm are primitive

recursive then so is the n-ary

function f(xl,..,xn)=

h[gl(xl, . .xn), . .,gm(xl, . .xn)].

3. Primitive recursion:

If g, hi and h2 are primitive

recursive (some arguments of hl and

h2 may be missing) then so is the

n-ary function (e represents the

empty word):

a. For n=±:

f(e)= w, wC Z

f(ax)= hl[x,f(x)]
f(bx)= h2[x,f(x)]

b. For n 2:

f(e,x2,..,xn)= g(x2,..,xn).

f(axl,x2, ..,xn)=

hl[xl, ..,xn, f(xl, ..xn)].

f(bxl,x2, ..,xn)=

h2[xl, ..xn, f(xl, .. ,xn)].
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Theorem D.02: The following hierarchy exist for functions

(9:52; 92:Chapter 13):

All Functions
U

Partial Recursive Functions
U

Total Recursive Functions
U

Primitive Recursive Functions

Now that the recursive functions have been identified,

the tie between languages and these functions needs to be

specified.

Definition D.04: A language L is Turing recognizable if it

is the domain of a Turing realizable

function (92:460).

Theorem D.03: A set is Turing recognizable if and only if it

is Turing enumerable (92:489).

A final theorem is needed which forms the starting seed

for the theorems that follow.

Theorem D.04: The set of base functions of the primitive

recursive functions is countably

infinite (92:525).

Grammar-Space Size

To determine the size of grammar space, the size of the

recursive function space needs to be determined first.

Theorem D.05: The cardinality of the set of partial recur-

sive functions is countably infinite.

Proof: First, from Theorem D.04, a subset of the

primitive recursive functions has countably
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infinite cardinality. From Theorem D.02, this

subset is contained within the partial recur-

sive functions. Therefore, the set of partial

recursive functions must be at least countably

infinite.

Next, Definitions 3.22 and 3.23 of Section

III and Theorem D.01 establishes that Turing

machines can only compute partial recursive

functions. Theorem 3.13 of Section III

established that the cardinality of the set of

all Turing machines is countably infinite.

Therefore, the set of partial recursive

functions can be at most countably infinite.

Finally, given that both the upper and

lower cardinality-bounds are equal, the set of

partial recursive functions is countably

infinite. Q.E.D.

Having established the size of computable functions, the

relationship between grammars and partial recursive func-

tions is needed. Even though this relationship is well

known (92:Chapter 13), the statement of the theorem and the

proof technique used herein provides a clear view of this

relationship.

Theorem D.06: For every set of type-0 grammars generating

the same type-0 language over a given alpha-

bet, there must exist a set of partial recur-
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• sive functions that generate an equivalent

recursively enumerable set (type-0 language).

Proof: The case for one grammar and one partial

recursive function will be handled first.

From Definitions 3.17 and 3.20 and Theorem

3.12 of Section III, every type-0 language is

generated by some type-0 grammar and the

language is a recursively enumerable set.

Next, from Definition 3.17 and Theoren D.03,

every one of the unique type-0 languages is

Turing enumerable. Now, by Definition 3.24 of

Section III, there must exist a Turing comput-

able function that generates an equivalent,

unique, recursively enumerable set of the

natural numbers. Finally, by Theorem D.01,

the Turing computable function performing the

enumeration must be a partial recursive

function. Therefore, for some type-0 grammar

there must exist some partial recursive

function that generates an equivalent

recursively enumerable set.

Now, expand this finding to the set of

grammars and functions. Because of the

existence of normal-forms for the type-0

Igrammars (6:Chapter 5), more than one type-0

grammar can exist that generates the same

type-0 language. Similarly, more than one
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partial recursive function exists that gener-

ates the same equivalent recursively enumer-

able set (e.g. (4X+4)/2 and 2X+2). Therefore,

from the previous proof of the single language

case, it follows that for every set of type-0

grammars generating the same type-0 language,

there must exist a set of partial recursive

functions that generate an equivalent

recursively enumerable set. Q.E.D.

Theorem D.06 only establishes that some set of partial

recursive functions exists for a given set of type-0 gram-

mars. The theorem does not indicate a one-to-one corre-

spondence of the members of these sets. However, a one-to-

-V. one correspondence has to be assumed to exist in order to

bound the size of grammar space.

Theorem D.07: The cardinality of the set of all type-0

grammars over a given alphabet is countably

infinite.

Proof: Because of the existence of normal-forms for

the type-0 grammars (6:Chapter 5), more than

one type-0 grammar can exist that generates

*the same type-0 language. However, formal

language theorists have not proven the exact

number of equivalent type-0 grammars existing

per type-0 language. Therefore, the size of

grammar space will have to be determined by
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establishing upper and lower size-bounds for

the set of all type-0 grammars.

The lower size-bound can be established

from Definitions 3.07 and 3.20 and Theorem

3.11 of Section III. These definitions and

theorem establish that there exists a count-

ably infinite number of unique type-0 lan-

guages each generated by a different type-0

grammar. Since a countably infinite number of

type-0 languages exist, there must be at least

a countably infinite number of unique type-0

grammars. Hence, the lower size-bound on

type-0 grammars is countably infinite.

The upper size-bound follows directly form

Theorems D.05 and D.06. Theorem D.06 estab-

lished the existence of a set of type-0

grammars and a set of partial recursive

functions that generate an equivalent recur-

sively enumerable set (type-0 language).

Because a single type-0 grammar (partial

recursive function) only generates a single

type-0 language (recursively enumerable set),

all existing sets of type-0 grammars (partial

- recursive functions) meeting Theorem D.06 have

.5 to be disjoint. That is, individual type-0

- grammar G1 (partial recursive function Fl) can

only be a member of one set of type-0 grammars
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(partial recursive functions). From this

disjoint property, set theory reveals that the

largest possible number of sets of type-0

grammars (partial recursive functions) that

can meet Theorem D.06 are sets that contain

only one member. That is, type-0 grammar G1

and partial recursive Fl are the only grammar

and function generating the same equivalent

recursively enumerable set (type-0 language).

Therefore, to establish the upper size-

bound on the set of type-0 grammars, assume

that this one-to-one correspondence exists.

Then, from Theorem D.05, the upper size-bound

on the type-0 grammars is countably infinite.

Finally, since both the upper and lower

size-bounds are countably infinite, the

cardinality of the set of type-0 grammars is

countably infinite. Q.E.D.

Now that the size of the set of type-0 grammars for a

given alphabet has been established, the cardinality of the

set of all type-0 grammars over all finite alphabets can be

found using set theory.

Theorem D.09: The set of type-0 grammars over all finite

alphabets has countably infinite cardinality.

Proof: From AFL theory, all the finite alphabets are

obtained from a countably infinite alphabet

(97:33). From Theorem 3.10 of Section III,
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the set of all possible finite alphabets over

this countably infinite alphabet has countably

infinite cardinality. Since every set has the

empty set 0 as a finite subset, this count-

ably infinite group of finite sets must

contain . However, by Definition 3.01 of

Section III, an alphabet cannot be the empty

set. Therefore, remove the empty set from

this group of alphabets. By applying the

f(x)=x-1 mapping on the indexes of the remain-

ing finite sets, there is still a countably

infinite number of finite sets remaining.

Now, for each finite alphabet, form the

countably infinite set of all type-0 grammars

(see Theorem D.07). Then, perform the set

union operation over these countably infinite

sets of grammars. By Theorem 3.05 of Section

III, the resulting set has countably infinite

cardinality. Q.E.D.
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